These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 27572052)
1. Transient spatio-temporal dynamics of a diffusive plant-herbivore system with Neumann boundary conditions. Yu F; Wang L; Watmough J J Biol Dyn; 2016 Dec; 10(1):477-500. PubMed ID: 27572052 [TBL] [Abstract][Full Text] [Related]
2. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Wang L; Watmough J; Yu F Math Biosci Eng; 2015 Aug; 12(4):699-715. PubMed ID: 25974343 [TBL] [Abstract][Full Text] [Related]
3. Bifurcation structure of nonconstant positive steady states for a diffusive predator-prey model. Tong DF; Cai YL; Wang BX; Wang WM Math Biosci Eng; 2019 May; 16(5):3988-4006. PubMed ID: 31499646 [TBL] [Abstract][Full Text] [Related]
4. Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion. Wang M Math Biosci; 2008 Apr; 212(2):149-60. PubMed ID: 18346760 [TBL] [Abstract][Full Text] [Related]
5. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Chang X; Wei J Math Biosci Eng; 2013 Aug; 10(4):979-96. PubMed ID: 23906199 [TBL] [Abstract][Full Text] [Related]
6. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Shen Z; Wei J Math Biosci Eng; 2018 Jun; 15(3):693-715. PubMed ID: 30380326 [TBL] [Abstract][Full Text] [Related]
7. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Banerjee M; Banerjee S Math Biosci; 2012 Mar; 236(1):64-76. PubMed ID: 22207074 [TBL] [Abstract][Full Text] [Related]
8. Searching for spatial patterns in a pollinator-plant-herbivore mathematical model. Sánchez-Garduño F; Breña-Medina VF Bull Math Biol; 2011 May; 73(5):1118-53. PubMed ID: 21108013 [TBL] [Abstract][Full Text] [Related]
9. Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting. Sun GX; Dai BX Math Biosci Eng; 2020 May; 17(4):3520-3552. PubMed ID: 32987542 [TBL] [Abstract][Full Text] [Related]
10. Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis. Xu X; Wang YB; Wang YW Math Biosci Eng; 2019 Mar; 16(4):1786-1797. PubMed ID: 31137185 [TBL] [Abstract][Full Text] [Related]
11. Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. Baurmann M; Gross T; Feudel U J Theor Biol; 2007 Mar; 245(2):220-9. PubMed ID: 17140604 [TBL] [Abstract][Full Text] [Related]
12. Bifurcation analysis and chaos control for a plant-herbivore model with weak predator functional response. Din Q; Shabbir MS; Khan MA; Ahmad K J Biol Dyn; 2019 Dec; 13(1):481-501. PubMed ID: 31286844 [TBL] [Abstract][Full Text] [Related]
13. Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Manna K; Banerjee M Math Biosci Eng; 2019 Mar; 16(4):2411-2446. PubMed ID: 31137220 [TBL] [Abstract][Full Text] [Related]
14. Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system. Rodrigues LA; Mistro DC; Petrovskii S Bull Math Biol; 2011 Aug; 73(8):1812-40. PubMed ID: 20972714 [TBL] [Abstract][Full Text] [Related]
15. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey. Kooi BW; Venturino E Math Biosci; 2016 Apr; 274():58-72. PubMed ID: 26874217 [TBL] [Abstract][Full Text] [Related]
16. Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response. Han R; Dai B; Wang L Math Biosci Eng; 2018 Jun; 15(3):595-627. PubMed ID: 30380322 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Cai Y; Banerjee M; Kang Y; Wang W Math Biosci Eng; 2014 Dec; 11(6):1247-74. PubMed ID: 25365601 [TBL] [Abstract][Full Text] [Related]
18. Dynamics and spatio-temporal patterns in a prey-predator system with aposematic prey. Sasmal SK; Banerjee J; Takeuchi Y Math Biosci Eng; 2019 May; 16(5):3864-3884. PubMed ID: 31499640 [TBL] [Abstract][Full Text] [Related]
19. The diffusive Lotka-Volterra predator-prey system with delay. Al Noufaey KS; Marchant TR; Edwards MP Math Biosci; 2015 Dec; 270(Pt A):30-40. PubMed ID: 26471317 [TBL] [Abstract][Full Text] [Related]
20. Turing-Hopf Bifurcation Analysis in a Diffusive Ratio-Dependent Predator-Prey Model with Allee Effect and Predator Harvesting. Chen M; Xu Y; Zhao J; Wei X Entropy (Basel); 2023 Dec; 26(1):. PubMed ID: 38248144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]