These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27572163)

  • 1. The metabolic background is a global player in Saccharomyces gene expression epistasis.
    Alam MT; Zelezniak A; Mülleder M; Shliaha P; Schwarz R; Capuano F; Vowinckel J; Radmanesfahar E; Krüger A; Calvani E; Michel S; Börno S; Christen S; Patil KR; Timmermann B; Lilley KS; Ralser M
    Nat Microbiol; 2016 Feb; 1():15030. PubMed ID: 27572163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks.
    He X; Qian W; Wang Z; Li Y; Zhang J
    Nat Genet; 2010 Mar; 42(3):272-6. PubMed ID: 20101242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible cross-regulation of phosphate and sulfate metabolism in Saccharomyces cerevisiae.
    O'Connell KF; Baker RE
    Genetics; 1992 Sep; 132(1):63-73. PubMed ID: 1398064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast.
    Musso G; Costanzo M; Huangfu M; Smith AM; Paw J; San Luis BJ; Boone C; Giaever G; Nislow C; Emili A; Zhang Z
    Genome Res; 2008 Jul; 18(7):1092-9. PubMed ID: 18463300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of control mechanisms for Saccharomyces cerevisiae central metabolic reactions using metabolome data of eight single-gene deletion mutants.
    Shirai T; Matsuda F; Okamoto M; Kondo A
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3569-77. PubMed ID: 23224404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p.
    Moxley JF; Jewett MC; Antoniewicz MR; Villas-Boas SG; Alper H; Wheeler RT; Tong L; Hinnebusch AG; Ideker T; Nielsen J; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6477-82. PubMed ID: 19346491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular epistasis in yeast metabolism.
    Segrè D; Deluna A; Church GM; Kishony R
    Nat Genet; 2005 Jan; 37(1):77-83. PubMed ID: 15592468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular epistasis and the compensatory evolution of gene deletion mutants.
    Rojas Echenique JI; Kryazhimskiy S; Nguyen Ba AN; Desai MM
    PLoS Genet; 2019 Feb; 15(2):e1007958. PubMed ID: 30768593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic interaction profiles of regulatory kinases differ between environmental conditions and cellular states.
    Sun S; Baryshnikova A; Brandt N; Gresham D
    Mol Syst Biol; 2020 May; 16(5):e9167. PubMed ID: 32449603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic epistasis under varying environmental perturbations.
    Barker B; Xu L; Gu Z
    PLoS One; 2015; 10(1):e0114911. PubMed ID: 25625594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of response-modulated genetic interactions by sensitivity-based epistatic analysis.
    Batenchuk C; Tepliakova L; Kaern M
    BMC Genomics; 2010 Sep; 11():493. PubMed ID: 20831804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epistatic interaction maps relative to multiple metabolic phenotypes.
    Snitkin ES; Segrè D
    PLoS Genet; 2011 Feb; 7(2):e1001294. PubMed ID: 21347328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flux balance analysis with or without molecular crowding fails to predict two thirds of experimentally observed epistasis in yeast.
    Alzoubi D; Desouki AA; Lercher MJ
    Sci Rep; 2019 Aug; 9(1):11837. PubMed ID: 31413270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae.
    Herrgård MJ; Lee BS; Portnoy V; Palsson BØ
    Genome Res; 2006 May; 16(5):627-35. PubMed ID: 16606697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging the gap between gene expression and metabolic phenotype via kinetic models.
    Vital-Lopez FG; Wallqvist A; Reifman J
    BMC Syst Biol; 2013 Jul; 7():63. PubMed ID: 23875723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae.
    Saint-Marc C; Hürlimann HC; Daignan-Fornier B; Pinson B
    Curr Genet; 2015 Nov; 61(4):633-40. PubMed ID: 25893566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epistatic relationships reveal the functional organization of yeast transcription factors.
    Zheng J; Benschop JJ; Shales M; Kemmeren P; Greenblatt J; Cagney G; Holstege F; Li H; Krogan NJ
    Mol Syst Biol; 2010 Oct; 6():420. PubMed ID: 20959818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network of epistatic interactions within a yeast snoRNA.
    Puchta O; Cseke B; Czaja H; Tollervey D; Sanguinetti G; Kudla G
    Science; 2016 May; 352(6287):840-4. PubMed ID: 27080103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of genotype and nutrition on survival and metabolism of starving yeast.
    Boer VM; Amini S; Botstein D
    Proc Natl Acad Sci U S A; 2008 May; 105(19):6930-5. PubMed ID: 18456835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pharmaco-epistasis strategy reveals a new cell size controlling pathway in yeast.
    Moretto F; Sagot I; Daignan-Fornier B; Pinson B
    Mol Syst Biol; 2013 Nov; 9():707. PubMed ID: 24217298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.