BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27572608)

  • 1. Functional Characterization of Acetylcholine Receptors Expressed in Human Neurons Differentiated from Hippocampal Neural Stem/Progenitor Cells.
    Fukushima K; Yamazaki K; Miyamoto N; Sawada K
    J Biomol Screen; 2016 Dec; 21(10):1065-1074. PubMed ID: 27572608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells.
    Resende RR; Alves AS; Britto LR; Ulrich H
    Exp Cell Res; 2008 Apr; 314(7):1429-43. PubMed ID: 18331729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Human Hippocampal Neural Stem/Progenitor Cells and Their Application to Physiologically Relevant Assays for Multiple Ionotropic Glutamate Receptors.
    Fukushima K; Tabata Y; Imaizumi Y; Kohmura N; Sugawara M; Sawada K; Yamazaki K; Ito M
    J Biomol Screen; 2014 Sep; 19(8):1174-84. PubMed ID: 24980597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of a Human Neuronal Network Assessment System by Using a Human Neuron/Astrocyte Co-Culture Derived from Fetal Neural Stem/Progenitor Cells.
    Fukushima K; Miura Y; Sawada K; Yamazaki K; Ito M
    J Biomol Screen; 2016 Jan; 21(1):54-64. PubMed ID: 26482803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) binding and functional profile.
    Biton B; Bergis OE; Galli F; Nedelec A; Lochead AW; Jegham S; Godet D; Lanneau C; Santamaria R; Chesney F; Léonardon J; Granger P; Debono MW; Bohme GA; Sgard F; Besnard F; Graham D; Coste A; Oblin A; Curet O; Vigé X; Voltz C; Rouquier L; Souilhac J; Santucci V; Gueudet C; Françon D; Steinberg R; Griebel G; Oury-Donat F; George P; Avenet P; Scatton B
    Neuropsychopharmacology; 2007 Jan; 32(1):1-16. PubMed ID: 17019409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer's disease therapy.
    Verma S; Kumar A; Tripathi T; Kumar A
    J Pharm Pharmacol; 2018 Aug; 70(8):985-993. PubMed ID: 29663387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of cholinergic responses in neurons in the intermediate grey layer of rat superior colliculus.
    Sooksawate T; Isa T
    Eur J Neurosci; 2006 Dec; 24(11):3096-108. PubMed ID: 17156371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of alpha7- and alpha4beta2-type postsynaptic nicotinic acetylcholine receptors in nicotine-induced excitation of dopaminergic neurons in the substantia nigra: a patch clamp and single-cell PCR study using acutely dissociated nigral neurons.
    Matsubayashi H; Inoue A; Amano T; Seki T; Nakata Y; Sasa M; Sakai N
    Brain Res Mol Brain Res; 2004 Oct; 129(1-2):1-7. PubMed ID: 15469877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The subtype-selective nicotinic acetylcholine receptor positive allosteric potentiator 2087101 differentially facilitates neurotransmission in the brain.
    de Filippi G; Mogg AJ; Phillips KG; Zwart R; Sher E; Chen Y
    Eur J Pharmacol; 2010 Sep; 643(2-3):218-24. PubMed ID: 20624387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choline-mediated modulation of hippocampal sharp wave-ripple complexes in vitro.
    Fischer V; Both M; Draguhn A; Egorov AV
    J Neurochem; 2014 Jun; 129(5):792-805. PubMed ID: 24673342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel contribution of cell surface and intracellular M1-muscarinic acetylcholine receptors to synaptic plasticity in hippocampus.
    Anisuzzaman AS; Uwada J; Masuoka T; Yoshiki H; Nishio M; Ikegaya Y; Takahashi N; Matsuki N; Fujibayashi Y; Yonekura Y; Momiyama T; Muramatsu I
    J Neurochem; 2013 Aug; 126(3):360-71. PubMed ID: 23678982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscarinic receptor subtypes as potential targets to modulate oligodendrocyte progenitor survival, proliferation, and differentiation.
    De Angelis F; Bernardo A; Magnaghi V; Minghetti L; Tata AM
    Dev Neurobiol; 2012 May; 72(5):713-28. PubMed ID: 21913336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Possible Mechanisms of Influence of Various Concentrations of Acetylcholine on Hippocampal Functioning].
    Silkis IG; Makechiv VA
    Usp Fiziol Nauk; 2016; 47(4):57-75. PubMed ID: 29283235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic modulation of excitatory synaptic transmission by nicotinic acetylcholine receptors in spinal ventral horn neurons.
    Mine N; Taniguchi W; Nishio N; Izumi N; Miyazaki N; Yamada H; Nakatsuka T; Yoshida M
    Neuroscience; 2015 Apr; 290():18-30. PubMed ID: 25613686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha7 nicotinic receptor up-regulation in cholinergic basal forebrain neurons in Alzheimer disease.
    Counts SE; He B; Che S; Ikonomovic MD; DeKosky ST; Ginsberg SD; Mufson EJ
    Arch Neurol; 2007 Dec; 64(12):1771-6. PubMed ID: 18071042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disparate cholinergic currents in rat principal trigeminal sensory nucleus neurons mediated by M1 and M2 receptors: a possible mechanism for selective gating of afferent sensory neurotransmission.
    Kohlmeier KA; Soja PJ; Kristensen MP
    Eur J Neurosci; 2006 Jun; 23(12):3245-58. PubMed ID: 16820015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer's disease.
    Maelicke A; Schrattenholz A; Samochocki M; Radina M; Albuquerque EX
    Behav Brain Res; 2000 Aug; 113(1-2):199-206. PubMed ID: 10942046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of galantamine on the human alpha7 neuronal nicotinic acetylcholine receptor, the Torpedo nicotinic acetylcholine receptor and spontaneous cholinergic synaptic activity.
    Texidó L; Ros E; Martín-Satué M; López S; Aleu J; Marsal J; Solsona C
    Br J Pharmacol; 2005 Jul; 145(5):672-8. PubMed ID: 15834443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile anesthetic isoflurane inhibits LTP induction of hippocampal CA1 neurons through α4β2 nAChR subtype-mediated mechanisms.
    Piao MH; Liu Y; Wang YS; Qiu JP; Feng CS
    Ann Fr Anesth Reanim; 2013 Oct; 32(10):e135-41. PubMed ID: 24011619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of nicotinic acetylcholine receptors enhances a slow calcium-dependent potassium conductance and reduces the firing of stratum oriens interneurons.
    Griguoli M; Scuri R; Ragozzino D; Cherubini E
    Eur J Neurosci; 2009 Sep; 30(6):1011-22. PubMed ID: 19735287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.