BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27572667)

  • 1. In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system.
    Narayanan A; Hill-Teran G; Moro A; Ristori E; Kasper DM; A Roden C; Lu J; Nicoli S
    Sci Rep; 2016 Aug; 6():32386. PubMed ID: 27572667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrogation of Functional miRNA-Target Interactions by CRISPR/Cas9 Genome Engineering.
    Michaels YS; Wu Q; Fulga TA
    Methods Mol Biol; 2017; 1580():79-97. PubMed ID: 28439828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Mutagenesis of Marek's Disease Virus-Encoded microRNAs Using a CRISPR/Cas9-Based Gene Editing System.
    Luo J; Teng M; Zai X; Tang N; Zhang Y; Mandviwala A; Reddy VRAP; Baigent S; Yao Y; Nair V
    Viruses; 2020 Apr; 12(4):. PubMed ID: 32325942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Multiple Genome Modifications Induced by the CRISPR/Cas9 System.
    Ota S; Kawahara A
    Methods Mol Biol; 2016; 1451():53-63. PubMed ID: 27464800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
    Burger A; Lindsay H; Felker A; Hess C; Anders C; Chiavacci E; Zaugg J; Weber LM; Catena R; Jinek M; Robinson MD; Mosimann C
    Development; 2016 Jun; 143(11):2025-37. PubMed ID: 27130213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of miRNA sequences by TALENs and CRISPR/Cas9 induces varied lengths of miRNA production.
    Bi H; Fei Q; Li R; Liu B; Xia R; Char SN; Meyers BC; Yang B
    Plant Biotechnol J; 2020 Jul; 18(7):1526-1536. PubMed ID: 31821678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of Recombinant CRISPR/rCas9-Mediated miRNA Gene Editing in Rice.
    Chung PJ; Chung H; Oh N; Choi J; Bang SW; Jung SE; Jung H; Shim JS; Kim JK
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33339449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic organization of zebrafish microRNAs.
    Thatcher EJ; Bond J; Paydar I; Patton JG
    BMC Genomics; 2008 May; 9():253. PubMed ID: 18510755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system.
    Jao LE; Wente SR; Chen W
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13904-9. PubMed ID: 23918387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of Targeted Genomic Deletions Through CRISPR/Cas System in Zebrafish.
    Xiao A; Zhang B
    Methods Mol Biol; 2016; 1451():65-79. PubMed ID: 27464801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interrogation of Functional miRNA-Target Interactions by CRISPR/Cas9 Genome Engineering.
    Wu Q; Michaels YS; Fulga TA
    Methods Mol Biol; 2023; 2630():243-264. PubMed ID: 36689187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-associated miRNAs.
    Kurata JS; Lin RJ
    RNA; 2018 Jul; 24(7):966-981. PubMed ID: 29720387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize.
    Char SN; Neelakandan AK; Nahampun H; Frame B; Main M; Spalding MH; Becraft PW; Meyers BC; Walbot V; Wang K; Yang B
    Plant Biotechnol J; 2017 Feb; 15(2):257-268. PubMed ID: 27510362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function.
    Lataniotis L; Albrecht A; Kok FO; Monfries CAL; Benedetti L; Lawson ND; Hughes SM; Steinhofel K; Mayr M; Zampetaki A
    Sci Rep; 2017 Aug; 7(1):8585. PubMed ID: 28819307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the
    Zhang S; Zhang R; Gao J; Gu T; Song G; Li W; Li D; Li Y; Li G
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving a Quantitative Trait in Rice by Multigene Editing with CRISPR-Cas9.
    Yimam YT; Zhou J; Akher SA; Zheng X; Qi Y; Zhang Y
    Methods Mol Biol; 2021; 2238():205-219. PubMed ID: 33471333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clonal analysis of gene loss of function and tissue-specific gene deletion in zebrafish via CRISPR/Cas9 technology.
    De Santis F; Di Donato V; Del Bene F
    Methods Cell Biol; 2016; 135():171-88. PubMed ID: 27443925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish.
    Varshney GK; Carrington B; Pei W; Bishop K; Chen Z; Fan C; Xu L; Jones M; LaFave MC; Ledin J; Sood R; Burgess SM
    Nat Protoc; 2016 Dec; 11(12):2357-2375. PubMed ID: 27809318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-Type-Specific CRISPR Activation with MicroRNA-Responsive AcrllA4 Switch.
    Hirosawa M; Fujita Y; Saito H
    ACS Synth Biol; 2019 Jul; 8(7):1575-1582. PubMed ID: 31268303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.