BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 27572693)

  • 1. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments.
    Wu W; Li J; Niazi NK; Müller K; Chu Y; Zhang L; Yuan G; Lu K; Song Z; Wang H
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22890-22896. PubMed ID: 27572693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation.
    Wu W; Li J; Lan T; Müller K; Niazi NK; Chen X; Xu S; Zheng L; Chu Y; Li J; Yuan G; Wang H
    Sci Total Environ; 2017 Jan; 576():766-774. PubMed ID: 27810761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars.
    Ding W; Dong X; Ime IM; Gao B; Ma LQ
    Chemosphere; 2014 Jun; 105():68-74. PubMed ID: 24393563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars.
    Rajapaksha AU; Vithanage M; Zhang M; Ahmad M; Mohan D; Chang SX; Ok YS
    Bioresour Technol; 2014 Aug; 166():303-8. PubMed ID: 24926603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation.
    Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX
    Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures.
    Yang F; Gao Y; Sun L; Zhang S; Li J; Zhang Y
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18528-18539. PubMed ID: 29700748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption Removal of 17β-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry.
    Wang X; Liu N; Liu Y; Jiang L; Zeng G; Tan X; Liu S; Yin Z; Tian S; Li J
    Int J Environ Res Public Health; 2017 Oct; 14(10):. PubMed ID: 29019933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fixed bed column experiments using cotton gin waste and walnut shells-derived biochar as low-cost solutions to removing pharmaceuticals from aqueous solutions.
    Ndoun MC; Knopf A; Preisendanz HE; Vozenilek N; Elliott HA; Mashtare ML; Velegol S; Veith TL; Williams CF
    Chemosphere; 2023 Jul; 330():138591. PubMed ID: 37037352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of cadmium in aqueous solution using wheat straw biochar: effect of minerals and mechanism.
    Liu L; Fan S
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8688-8700. PubMed ID: 29322394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative sorption isotherms and removal studies for Pb(II) by physical and thermochemical modification of low-cost agro-wastes from Tanzania.
    Rwiza MJ; Oh SY; Kim KW; Kim SD
    Chemosphere; 2018 Mar; 195():135-145. PubMed ID: 29268172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of Na
    Hu X; Xue Y; Liu L; Zeng Y; Long L
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9887-9895. PubMed ID: 29372530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature.
    Rodríguez-Vila A; Selwyn-Smith H; Enunwa L; Smail I; Covelo EF; Sizmur T
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7730-7739. PubMed ID: 29288302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of harvest time and desalination of feedstock on Spartina alterniflora biochar and its efficiency for Cd
    Xia H; Kong W; Liu L; Lin K; Li H
    Ecotoxicol Environ Saf; 2021 Jan; 207():111309. PubMed ID: 32931970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment.
    Tian J; Miller V; Chiu PC; Maresca JA; Guo M; Imhoff PT
    Sci Total Environ; 2016 May; 553():596-606. PubMed ID: 26938322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative mechanisms of cadmium adsorption on rice straw- and swine manure-derived biochars.
    Deng Y; Huang S; Laird DA; Wang X; Dong C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32418-32432. PubMed ID: 30232770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II).
    Xiao J; Hu R; Chen G
    J Hazard Mater; 2020 Apr; 387():121980. PubMed ID: 31927255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars.
    Mohan D; Singh P; Sarswat A; Steele PH; Pittman CU
    J Colloid Interface Sci; 2015 Jun; 448():238-50. PubMed ID: 25744855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass.
    Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW
    Chemosphere; 2015 Sep; 134():257-62. PubMed ID: 25957037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the influence of surface physico-chemical properties of biosorbents on heavy metal adsorption.
    Pathirana C; Ziyath AM; Jinadasa KBSN; Egodawatta P; Sarina S; Goonetilleke A
    Chemosphere; 2019 Nov; 234():488-495. PubMed ID: 31229709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.