BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27573353)

  • 1. Identification of Mechanism-Based Inactivation in P450-Catalyzed Cyclopropanation Facilitates Engineering of Improved Enzymes.
    Renata H; Lewis RD; Sweredoski MJ; Moradian A; Hess S; Wang ZJ; Arnold FH
    J Am Chem Soc; 2016 Sep; 138(38):12527-33. PubMed ID: 27573353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer.
    Yang Y; Arnold FH
    Acc Chem Res; 2021 Mar; 54(5):1209-1225. PubMed ID: 33491448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties.
    Fasan R; Chen MM; Crook NC; Arnold FH
    Angew Chem Int Ed Engl; 2007; 46(44):8414-8. PubMed ID: 17886313
    [No Abstract]   [Full Text] [Related]  

  • 4. Enhancing cytochrome P450-mediated non-natural cyclopropanation by mutation of a conserved second-shell residue.
    Gober JG; Rydeen AE; Schwochert TD; Gibson-O'Grady EJ; Brustad EM
    Biotechnol Bioeng; 2018 Jun; 115(6):1416-1426. PubMed ID: 29460311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of chemical innovation: new enzymes by evolution.
    Arnold FH
    Q Rev Biophys; 2015 Nov; 48(4):404-10. PubMed ID: 26537398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-natural olefin cyclopropanation catalyzed by diverse cytochrome P450s and other hemoproteins.
    Heel T; McIntosh JA; Dodani SC; Meyerowitz JT; Arnold FH
    Chembiochem; 2014 Nov; 15(17):2556-62. PubMed ID: 25294253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes.
    Coelho PS; Brustad EM; Kannan A; Arnold FH
    Science; 2013 Jan; 339(6117):307-10. PubMed ID: 23258409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of high stereocontrol in olefin cyclopropanation catalyzed by an engineered carbene transferase.
    Tinoco A; Wei Y; Bacik JP; Carminati DM; Moore EJ; Ando N; Zhang Y; Fasan R
    ACS Catal; 2019 Feb; 9(2):1514-1524. PubMed ID: 31134138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A natural heme-signature variant of CYP267A1 from Sorangium cellulosum So ce56 executes diverse ω-hydroxylation.
    Khatri Y; Hannemann F; Girhard M; Kappl R; Hutter M; Urlacher VB; Bernhardt R
    FEBS J; 2015 Jan; 282(1):74-88. PubMed ID: 25302415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Insights into the Mechanism and Stereoselectivity of Olefin Cyclopropanation Catalyzed by Two Engineered Cytochrome P450 Enzymes.
    Su H; Ma G; Liu Y
    Inorg Chem; 2018 Sep; 57(18):11738-11745. PubMed ID: 30156099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutating a Highly Conserved Residue in Diverse Cytochrome P450s Facilitates Diastereoselective Olefin Cyclopropanation.
    Gober JG; Rydeen AE; Gibson-O'Grady EJ; Leuthaeuser JB; Fetrow JS; Brustad EM
    Chembiochem; 2016 Mar; 17(5):394-7. PubMed ID: 26690878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural flexibility and functional versatility of mammalian P450 enzymes.
    Negishi M; Uno T; Darden TA; Sueyoshi T; Pedersen LG
    FASEB J; 1996 May; 10(7):683-9. PubMed ID: 8635685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Cytochrome P450 Enzymes and Their Applications in Synthetic Biology.
    Jeffreys LN; Girvan HM; McLean KJ; Munro AW
    Methods Enzymol; 2018; 608():189-261. PubMed ID: 30173763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of cytochrome P450 enzymes for biocatalysis: exploiting the catalytic versatility of enzymes with relaxed substrate specificity.
    Behrendorff JB; Huang W; Gillam EM
    Biochem J; 2015 Apr; 467(1):1-15. PubMed ID: 25793416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repurposed and artificial heme enzymes for cyclopropanation reactions.
    Roelfes G
    J Inorg Biochem; 2021 Sep; 222():111523. PubMed ID: 34217039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering bacterial cytochrome P450 (P450) BM3 into a prototype with human P450 enzyme activity using indigo formation.
    Park SH; Kim DH; Kim D; Kim DH; Jung HC; Pan JG; Ahn T; Kim D; Yun CH
    Drug Metab Dispos; 2010 May; 38(5):732-9. PubMed ID: 20100815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW
    Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular basis and enzyme engineering strategies for improvement of coupling efficiency in cytochrome P450s.
    Meng S; Ji Y; Zhu L; Dhoke GV; Davari MD; Schwaneberg U
    Biotechnol Adv; 2022 Dec; 61():108051. PubMed ID: 36270499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed Evolution of a Cytochrome P450 Carbene Transferase for Selective Functionalization of Cyclic Compounds.
    Brandenberg OF; Chen K; Arnold FH
    J Am Chem Soc; 2019 Jun; 141(22):8989-8995. PubMed ID: 31070908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of cytochrome P450 3A4 modification site with reactive metabolite using linear ion trap-Fourier transform mass spectrometry.
    Yukinaga H; Takami T; Shioyama SH; Tozuka Z; Masumoto H; Okazaki O; Sudo K
    Chem Res Toxicol; 2007 Oct; 20(10):1373-8. PubMed ID: 17867646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.