BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 27573406)

  • 1. Hybrid Semiconductor-Metal Nanorods as Photocatalysts.
    Ben-Shahar Y; Banin U
    Top Curr Chem (Cham); 2016 Aug; 374(4):54. PubMed ID: 27573406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge Carrier Dynamics in Photocatalytic Hybrid Semiconductor-Metal Nanorods: Crossover from Auger Recombination to Charge Transfer.
    Ben-Shahar Y; Philbin JP; Scotognella F; Ganzer L; Cerullo G; Rabani E; Banin U
    Nano Lett; 2018 Aug; 18(8):5211-5216. PubMed ID: 29985622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface coating on the photocatalytic function of hybrid CdS-Au nanorods.
    Ben-Shahar Y; Scotognella F; Waiskopf N; Kriegel I; Dal Conte S; Cerullo G; Banin U
    Small; 2015 Jan; 11(4):462-71. PubMed ID: 25207751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic Hybrid Semiconductor-Metal Nanoparticles; from Synergistic Properties to Emerging Applications.
    Waiskopf N; Ben-Shahar Y; Banin U
    Adv Mater; 2018 Oct; 30(41):e1706697. PubMed ID: 29656489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic Reactive Oxygen Species Formation by Semiconductor-Metal Hybrid Nanoparticles. Toward Light-Induced Modulation of Biological Processes.
    Waiskopf N; Ben-Shahar Y; Galchenko M; Carmel I; Moshitzky G; Soreq H; Banin U
    Nano Lett; 2016 Jul; 16(7):4266-73. PubMed ID: 27224678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation.
    Cho J; Sheng A; Suwandaratne N; Wangoh L; Andrews JL; Zhang P; Piper LFJ; Watson DF; Banerjee S
    Acc Chem Res; 2019 Mar; 52(3):645-655. PubMed ID: 30543407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Manipulation by Rutile TiO
    Wada K; Ranasinghe CSK; Kuriki R; Yamakata A; Ishitani O; Maeda K
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23869-23877. PubMed ID: 28654233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods.
    Ben-Shahar Y; Scotognella F; Kriegel I; Moretti L; Cerullo G; Rabani E; Banin U
    Nat Commun; 2016 Jan; 7():10413. PubMed ID: 26783194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of Excited States and Electron Transfer of Semiconductor-Metal-Complex Hybrid Photocatalysts for CO
    Sato S; Tanaka S; Yamanaka KI; Saeki S; Sekizawa K; Suzuki TM; Morikawa T; Onda K
    Chemistry; 2021 Jan; 27(3):1127-1137. PubMed ID: 33020962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfide Ligands in Hybrid Semiconductor-Metal Nanocrystal Photocatalysts: Improved Hole Extraction and Altered Catalysis.
    Levi A; Verbitsky L; Waiskopf N; Banin U
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):647-653. PubMed ID: 34958193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double heterojunction nanowire photocatalysts for hydrogen generation.
    Tongying P; Vietmeyer F; Aleksiuk D; Ferraudi GJ; Krylova G; Kuno M
    Nanoscale; 2014 Apr; 6(8):4117-24. PubMed ID: 24604246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inorganic Nanoparticles/Metal Organic Framework Hybrid Membrane Reactors for Efficient Photocatalytic Conversion of CO
    Maina JW; Schütz JA; Grundy L; Des Ligneris E; Yi Z; Kong L; Pozo-Gonzalo C; Ionescu M; Dumée LF
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35010-35017. PubMed ID: 28937742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schottky-barrier-free plasmonic photocatalysts.
    An K; Hu J; Wang J
    Phys Chem Chem Phys; 2023 Jul; 25(29):19358-19370. PubMed ID: 37439122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Magnetite-Semiconductor-Metal Trimer Nanoparticles through Functional Modular Assembly: A Magnetically Separable Photocatalyst with Photothermic Enhancement for Water Reduction.
    Pang F; Zhang R; Lan D; Ge J
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4929-4936. PubMed ID: 29345458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design.
    Kamat PV
    J Phys Chem Lett; 2012 Mar; 3(5):663-72. PubMed ID: 26286163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress, challenge and perspective of heterogeneous photocatalysts.
    Qu Y; Duan X
    Chem Soc Rev; 2013 Apr; 42(7):2568-80. PubMed ID: 23192101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Separation of Charge Carriers in In2O3-x(OH)y Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity.
    He L; Wood TE; Wu B; Dong Y; Hoch LB; Reyes LM; Wang D; Kübel C; Qian C; Jia J; Liao K; O'Brien PG; Sandhel A; Loh JY; Szymanski P; Kherani NP; Sum TC; Mims CA; Ozin GA
    ACS Nano; 2016 May; 10(5):5578-86. PubMed ID: 27159793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.