These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27573502)

  • 1. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.
    Bobrowski K; Skotnicki K; Szreder T
    Top Curr Chem (Cham); 2016 Oct; 374(5):60. PubMed ID: 27573502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation induced spent nuclear fuel dissolution under deep repository conditions.
    Jonsson M; Nielsen F; Roth O; Ekeroth E; Nilsson S; Hossain MM
    Environ Sci Technol; 2007 Oct; 41(20):7087-93. PubMed ID: 17993152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides.
    Björkbacka Å; Yang M; Gasparrini C; Leygraf C; Jonsson M
    Dalton Trans; 2015 Sep; 44(36):16045-51. PubMed ID: 26287519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward mechanistic understanding of nuclear reprocessing chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing.
    Nichols KP; Pompano RR; Li L; Gelis AV; Ismagilov RF
    J Am Chem Soc; 2011 Oct; 133(39):15721-9. PubMed ID: 21888347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of Radiolytic and Externally Generated H
    Liu N; Wu L; Qin Z; Shoesmith DW
    Environ Sci Technol; 2016 Nov; 50(22):12348-12355. PubMed ID: 27744698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gamma radiation induces hydrogen absorption by copper in water.
    Lousada CM; Soroka IL; Yagodzinskyy Y; Tarakina NV; Todoshchenko O; Hänninen H; Korzhavyi PA; Jonsson M
    Sci Rep; 2016 Apr; 6():24234. PubMed ID: 27086752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential applications of sonochemistry in spent nuclear fuel reprocessing: a short review.
    Nikitenko SI; Venault L; Pflieger R; Chave T; Bisel I; Moisy P
    Ultrason Sonochem; 2010 Aug; 17(6):1033-40. PubMed ID: 20022548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization and geological disposal of nuclear fuel waste.
    Tait JC
    Can J Physiol Pharmacol; 1984 Aug; 62(8):979-85. PubMed ID: 6488089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophilic Clicked 2,6-Bis-triazolyl-pyridines Endowed with High Actinide Selectivity and Radiochemical Stability: Toward a Closed Nuclear Fuel Cycle.
    Macerata E; Mossini E; Scaravaggi S; Mariani M; Mele A; Panzeri W; Boubals N; Berthon L; Charbonnel MC; Sansone F; Arduini A; Casnati A
    J Am Chem Soc; 2016 Jun; 138(23):7232-5. PubMed ID: 27203357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature on the low-linear energy transfer radiolysis of the ceric-cerous sulfate dosimeter: a Monte Carlo simulation study.
    Kohan LM; Meesungnoen J; Sanguanmith S; Meesat R; Jay-Gerin JP
    Radiat Res; 2014 May; 181(5):495-502. PubMed ID: 24754561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.
    Castro HA; Luca V; Bianchi HL
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21403-21410. PubMed ID: 28337628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rethinking nuclear fuel recycling.
    von Hippel FN
    Sci Am; 2008 May; 298(5):88-93. PubMed ID: 18444330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the radiolysis of supercritical water by fast neutrons: density dependence of the yields of primary species at 400°c.
    Butarbutar SL; Meesungnoen J; Guzonas DA; Stuart CR; Jay-Gerin JP
    Radiat Res; 2014 Dec; 182(6):695-704. PubMed ID: 25409127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uranium extraction from TRISO-coated fuel particles using supercritical CO2 containing tri-n-butyl phosphate.
    Zhu L; Duan W; Xu J; Zhu Y
    J Hazard Mater; 2012 Nov; 241-242():456-62. PubMed ID: 23089063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term geochemical evolution of the near field repository: insights from reactive transport modelling and experimental evidences.
    Arcos D; Grandia F; Domènech C; Fernández AM; Villar MV; Muurinen A; Carlsson T; Sellin P; Hernán P
    J Contam Hydrol; 2008 Dec; 102(3-4):196-209. PubMed ID: 18992963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.
    Bergelson BR; Gerasimov AS; Tikhomirov GV
    Radiat Prot Dosimetry; 2005; 115(1-4):445-7. PubMed ID: 16381764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weiss lecture. Applications of the radiation chemistry of water: acid rain and nuclear power.
    Buxton GV
    Int J Radiat Biol; 1991 Jan; 59(1):1-13. PubMed ID: 1671057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactor-based management of used nuclear fuel: assessment of major options.
    Finck PJ; Wigeland RA; Hill RN
    Health Phys; 2011 Jan; 100(1):46-53. PubMed ID: 21399411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State of Fukushima nuclear fuel debris tracked by Cs137 in cooling water.
    Grambow B; Mostafavi M
    Environ Sci Process Impacts; 2014 Nov; 16(11):2472-6. PubMed ID: 25245528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste?
    Thorne MC
    J Radiol Prot; 2012 Jun; 32(2):175-80. PubMed ID: 22569220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.