These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 27573677)
1. Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus. DE Lara AP; Lorenzon LB; Vianna AM; Santos FD; Pinto LS; Aires Berne ME; Leite FP Parasitology; 2016 Oct; 143(12):1665-71. PubMed ID: 27573677 [TBL] [Abstract][Full Text] [Related]
2. Larvicidal activity of Bacillus circulans against the gastrointestinal nematode Haemonchus contortus in sheep. Sinott MC; de Castro LL; Leite FL; Gallina T; De-Souza MT; Santos DF; Leite FP J Helminthol; 2016 Jan; 90(1):68-73. PubMed ID: 26693886 [TBL] [Abstract][Full Text] [Related]
3. Bacillus spp. toxicity against Haemonchus contortus larvae in sheep fecal cultures. Sinott MC; Cunha Filho NA; Castro LL; Lorenzon LB; Pinto NB; Capella GA; Leite FP Exp Parasitol; 2012 Oct; 132(2):103-8. PubMed ID: 22728159 [TBL] [Abstract][Full Text] [Related]
4. Co-expression of the mosquitocidal toxins Cyt1Aa and Cry11Aa from Bacillus thuringiensis subsp. israelensis in Asticcacaulis excentricus. Zheng D; Valdez-Cruz NA; Armengol G; Sevrez C; Munoz-Olaya JM; Yuan Z; Orduz S; Crickmore N Curr Microbiol; 2007 Jan; 54(1):58-62. PubMed ID: 17160360 [TBL] [Abstract][Full Text] [Related]
5. Single concentration tests show synergism among Bacillus thuringiensis subsp. israelensis toxins against the malaria vector mosquito Anopheles albimanus. Fernández-Luna MT; Tabashnik BE; Lanz-Mendoza H; Bravo A; Soberón M; Miranda-Ríos J J Invertebr Pathol; 2010 Jul; 104(3):231-3. PubMed ID: 20361977 [TBL] [Abstract][Full Text] [Related]
6. Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and subsequent pore formation. Oestergaard J; Ehlers RU; Martínez-Ramírez AC; Real MD Appl Environ Microbiol; 2007 Jun; 73(11):3623-9. PubMed ID: 17416690 [TBL] [Abstract][Full Text] [Related]
7. Use of Bacillus thuringiensis toxin as an alternative method of control against Haemonchus contortus. López ME; Flores J; Mendoza P; Vázquez V; Liébano E; Bravo A; Herrera D; Godínes E; Vargas P; Zamudio F Ann N Y Acad Sci; 2006 Oct; 1081():347-54. PubMed ID: 17135537 [TBL] [Abstract][Full Text] [Related]
8. A pair of adjacent genes, cry5Ad and orf2-5Ad, encode the typical N- and C-terminal regions of a Cry5Adelta-endotoxin as two separate proteins in Bacillus thuringiensis strain L366. Lenane IJ; Bagnall NH; Josh PF; Pearson RD; Akhurst RJ; Kotze AC FEMS Microbiol Lett; 2008 Jan; 278(1):115-20. PubMed ID: 18028391 [TBL] [Abstract][Full Text] [Related]
9. Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: Genome dynamic and toxins stability. Elleuch J; Zribi Zghal R; Lacoix MN; Chandre F; Tounsi S; Jaoua S Microbiol Res; 2015 Jul; 176():48-54. PubMed ID: 26070692 [TBL] [Abstract][Full Text] [Related]
10. The anthelmintic potential of Bacillus thuringiensis to counter the anthelmintic resistance against Haemonchus contortus. Panhwer SN; Gadahi JA; Luo Q; Huang C; Liu W; Jia L; Chen Z Exp Parasitol; 2023 Jul; 250():108533. PubMed ID: 37072106 [TBL] [Abstract][Full Text] [Related]
11. Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Kotze AC; O'Grady J; Gough JM; Pearson R; Bagnall NH; Kemp DH; Akhurst RJ Int J Parasitol; 2005 Aug; 35(9):1013-22. PubMed ID: 15964574 [TBL] [Abstract][Full Text] [Related]
12. Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Pérez C; Muñoz-Garay C; Portugal LC; Sánchez J; Gill SS; Soberón M; Bravo A Cell Microbiol; 2007 Dec; 9(12):2931-7. PubMed ID: 17672866 [TBL] [Abstract][Full Text] [Related]
13. Expression of the Bacillus thuringiensis mosquitocidal toxin Cry11Aa in the aquatic bacterium Asticcacaulis excentricus. Armengol G; Guevara OE; Orduz S; Crickmore N Curr Microbiol; 2005 Dec; 51(6):430-3. PubMed ID: 16252134 [TBL] [Abstract][Full Text] [Related]
14. Effect of oral administration of Bacillus thuringiensis var. oswaldocruzi to sheep on the development of larvae in fecal cultures. Al-Alam NN; Conrad NL; Pinto NB; de Souza Acunha N; Sedrez PA; Barichello JM; Leite FPL Vet Parasitol; 2022 Jun; 306():109718. PubMed ID: 35623964 [TBL] [Abstract][Full Text] [Related]
15. Microbial control of mosquitoes with special emphasis on bacterial control. Bhattacharya PR Indian J Malariol; 1998 Dec; 35(4):206-24. PubMed ID: 10748561 [TBL] [Abstract][Full Text] [Related]
16. Purification, characterization and proteolytic processing of mosquito larvicidal protein Cry11Aa from Bacillus thuringiensis subsp. israelensis ISPC-12. Kinkar OU; Prashar A; Yadav B; Kumar A; Hadapad AB; Hire RS; Makde RD Int J Biol Macromol; 2023 Jul; 242(Pt 4):124979. PubMed ID: 37245748 [TBL] [Abstract][Full Text] [Related]
17. Oligomerization of Cry11Aa from Bacillus thuringiensis has an important role in toxicity against Aedes aegypti. Muñoz-Garay C; Rodríguez-Almazán C; Aguilar JN; Portugal L; Gómez I; Saab-Rincon G; Soberón M; Bravo A Appl Environ Microbiol; 2009 Dec; 75(23):7548-50. PubMed ID: 19820153 [TBL] [Abstract][Full Text] [Related]
18. Intermolecular interaction between Cry2Aa and Cyt1Aa and its effect on larvicidal activity against Culex quinquefasciatus. Bideshi DK; Waldrop G; Fernandez-Luna MT; Diaz-Mendoza M; Wirth MC; Johnson JJ; Park HW; Federici BA J Microbiol Biotechnol; 2013 Aug; 23(8):1107-15. PubMed ID: 23727800 [TBL] [Abstract][Full Text] [Related]
19. [Influence of cry2A sporulation-dependent promoter and molecular chaperone ORF1-ORF2 from Bacillus thuringiensis on Cry11Aa protein]. Shi Y; Zeng S; Yuan M; Sun F; Pang Y Wei Sheng Wu Xue Bao; 2008 May; 48(5):672-6. PubMed ID: 18652302 [TBL] [Abstract][Full Text] [Related]
20. In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti. López-Molina S; do Nascimento NA; Silva-Filha MHNL; Guerrero A; Sánchez J; Pacheco S; Gill SS; Soberón M; Bravo A PLoS Pathog; 2021 Jan; 17(1):e1009199. PubMed ID: 33465145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]