These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
518 related articles for article (PubMed ID: 27573707)
1. Dynamics of sensorimotor cortex activation during absence and myoclonic seizures in a mouse model of juvenile myoclonic epilepsy. Ding L; Gallagher MJ Epilepsia; 2016 Oct; 57(10):1568-1580. PubMed ID: 27573707 [TBL] [Abstract][Full Text] [Related]
3. The developmental evolution of the seizure phenotype and cortical inhibition in mouse models of juvenile myoclonic epilepsy. Arain F; Zhou C; Ding L; Zaidi S; Gallagher MJ Neurobiol Dis; 2015 Oct; 82():164-175. PubMed ID: 26054439 [TBL] [Abstract][Full Text] [Related]
4. Changes in corticocortical and corticohippocampal network during absence seizures in WAG/Rij rats revealed with time varying Granger causality. Sysoeva MV; Vinogradova LV; Kuznetsova GD; Sysoev IV; van Rijn CM Epilepsy Behav; 2016 Nov; 64(Pt A):44-50. PubMed ID: 27728902 [TBL] [Abstract][Full Text] [Related]
5. Neurophysiology of juvenile myoclonic epilepsy: EEG-based network and graph analysis of the interictal and immediate preictal states. Clemens B; Puskás S; Besenyei M; Spisák T; Opposits G; Hollódy K; Fogarasi A; Fekete I; Emri M Epilepsy Res; 2013 Oct; 106(3):357-69. PubMed ID: 23886656 [TBL] [Abstract][Full Text] [Related]
6. Higher-order thalamic nuclei facilitate the generalization and maintenance of spike-and-wave discharges of absence seizures. Atherton Z; Nagy O; Barcsai L; Sere P; Zsigri N; Földi T; Gellért L; Berényi A; Crunelli V; Lőrincz ML Neurobiol Dis; 2023 Mar; 178():106025. PubMed ID: 36731682 [TBL] [Abstract][Full Text] [Related]
7. Dynamic flexibility and controllability of network communities in juvenile myoclonic epilepsy. Vataman A; Ciolac D; Chiosa V; Aftene D; Leahu P; Winter Y; Groppa SA; Gonzalez-Escamilla G; Muthuraman M; Groppa S Neurobiol Dis; 2023 Apr; 179():106055. PubMed ID: 36849015 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of directional coupling underlying spike-wave discharges. Sysoeva MV; Lüttjohann A; van Luijtelaar G; Sysoev IV Neuroscience; 2016 Feb; 314():75-89. PubMed ID: 26633265 [TBL] [Abstract][Full Text] [Related]
9. Altered Network Characteristics of Spike-Wave Discharges in Juvenile Myoclonic Epilepsy. Lee C; Im CH; Koo YS; Lim JA; Kim TJ; Byun JI; Sunwoo JS; Moon J; Kim DW; Lee ST; Jung KH; Chu K; Lee SK; Jung KY Clin EEG Neurosci; 2017 Mar; 48(2):111-117. PubMed ID: 26697882 [TBL] [Abstract][Full Text] [Related]
10. Peri-ictal network dynamics of spike-wave discharges: phase and spectral characteristics. Lüttjohann A; Schoffelen JM; van Luijtelaar G Exp Neurol; 2013 Jan; 239():235-47. PubMed ID: 23124095 [TBL] [Abstract][Full Text] [Related]
11. Onset and propagation of spike and slow wave discharges in human absence epilepsy: A MEG study. Westmijse I; Ossenblok P; Gunning B; van Luijtelaar G Epilepsia; 2009 Dec; 50(12):2538-48. PubMed ID: 19519798 [TBL] [Abstract][Full Text] [Related]
12. Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats. Sitnikova E; van Luijtelaar G Epilepsia; 2007 Dec; 48(12):2296-311. PubMed ID: 18196621 [TBL] [Abstract][Full Text] [Related]
13. Causal influence of epileptic network during spike-and-wave discharge in juvenile myoclonic epilepsy. Lee C; Kim SM; Jung YJ; Im CH; Kim DW; Jung KY Epilepsy Res; 2014 Feb; 108(2):257-66. PubMed ID: 24315023 [TBL] [Abstract][Full Text] [Related]
14. Spike-wave discharges in absence epilepsy: segregation of electrographic components reveals distinct pathways of seizure activity. Terlau J; Yang JW; Khastkhodaei Z; Seidenbecher T; Luhmann HJ; Pape HC; Lüttjohann A J Physiol; 2020 Jun; 598(12):2397-2414. PubMed ID: 32144956 [TBL] [Abstract][Full Text] [Related]
16. Increased resting functional connectivity in spike-wave epilepsy in WAG/Rij rats. Mishra AM; Bai X; Motelow JE; Desalvo MN; Danielson N; Sanganahalli BG; Hyder F; Blumenfeld H Epilepsia; 2013 Jul; 54(7):1214-22. PubMed ID: 23815571 [TBL] [Abstract][Full Text] [Related]
17. Temporal and Potential Predictive Relationships between Sleep Spindle Density and Spike-and-Wave Discharges. Abdelaal MS; Kato T; Natsubori A; Tanaka KF eNeuro; 2024 Sep; 11(9):. PubMed ID: 39256042 [TBL] [Abstract][Full Text] [Related]
18. IL-1β is induced in reactive astrocytes in the somatosensory cortex of rats with genetic absence epilepsy at the onset of spike-and-wave discharges, and contributes to their occurrence. Akin D; Ravizza T; Maroso M; Carcak N; Eryigit T; Vanzulli I; Aker RG; Vezzani A; Onat FY Neurobiol Dis; 2011 Dec; 44(3):259-69. PubMed ID: 21645619 [TBL] [Abstract][Full Text] [Related]
19. Adult-onset autosomal dominant myoclonic epilepsy: report of a family with an overlooked epileptic syndrome. Hsin YL; Chuang MF; Shyu WC; Lin CY; Chen YH; Harnod T Seizure; 2007 Mar; 16(2):160-5. PubMed ID: 17174115 [TBL] [Abstract][Full Text] [Related]
20. Electroencephalographic precursors of spike-wave discharges in a genetic rat model of absence epilepsy: Power spectrum and coherence EEG analyses. Sitnikova E; van Luijtelaar G Epilepsy Res; 2009 Apr; 84(2-3):159-71. PubMed ID: 19269137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]