BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 2757371)

  • 1. More monensin-sensitive, ammonia-producing bacteria from the rumen.
    Chen G; Russell JB
    Appl Environ Microbiol; 1989 May; 55(5):1052-7. PubMed ID: 2757371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus.
    Chen GJ; Russell JB
    Appl Environ Microbiol; 1988 Nov; 54(11):2742-9. PubMed ID: 2975156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of monensin on the specific activity of ammonia production by ruminal bacteria and disappearance of amino nitrogen from the rumen.
    Yang CM; Russell JB
    Appl Environ Microbiol; 1993 Oct; 59(10):3250-4. PubMed ID: 8250552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria.
    Yang CM; Russell JB
    J Anim Sci; 1993 Dec; 71(12):3470-6. PubMed ID: 8294302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of monensin and pH on the production and utilization of pyro-glutamate, a novel product of ruminal glutamine deamination.
    Russell JB; Chen GJ
    J Anim Sci; 1989 Sep; 67(9):2370-6. PubMed ID: 2599979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia production by ruminal microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from the sheep rumen.
    Eschenlauer SC; McKain N; Walker ND; McEwan NR; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2002 Oct; 68(10):4925-31. PubMed ID: 12324340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid deamination by ruminal Megasphaera elsdenii strains.
    Rychlik JL; LaVera R; Russell JB
    Curr Microbiol; 2002 Nov; 45(5):340-5. PubMed ID: 12232664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Populations of Proteolytic and Amino Acid-Fermenting Bacteria from Microbiota Analysis Using In Vitro Enrichment Cultures.
    Shen J; Yu Z; Zhu W
    Curr Microbiol; 2018 Nov; 75(11):1543-1550. PubMed ID: 30151556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport and deamination of amino acids by a gram-positive, monensin-sensitive ruminal bacterium.
    Chen G; Russell JB
    Appl Environ Microbiol; 1990 Jul; 56(7):2186-92. PubMed ID: 1975163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination.
    Krause DO; Russell JB
    Appl Environ Microbiol; 1996 Mar; 62(3):815-21. PubMed ID: 8975611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and genetic diversity of carbohydrate-fermenting and obligate amino acid-fermenting hyper-ammonia-producing bacteria from Nellore steers fed tropical forages and supplemented with casein.
    Bento CB; de Azevedo AC; Detmann E; Mantovani HC
    BMC Microbiol; 2015 Feb; 15():28. PubMed ID: 25888186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hydrophobicity of utilization of peptides by ruminal bacteria in vitro.
    Chen G; Strobel HJ; Russell JB; Sniffen CJ
    Appl Environ Microbiol; 1987 Sep; 53(9):2021-5. PubMed ID: 3674870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of arginine and lysine transport by whole cells and membrane vesicles of strain SR, a monensin-sensitive ruminal bacterium.
    Van Kessel JS; Russell JB
    Appl Environ Microbiol; 1992 Mar; 58(3):969-75. PubMed ID: 1315500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production.
    Russell JB; Strobel HJ; Chen GJ
    Appl Environ Microbiol; 1988 Apr; 54(4):872-7. PubMed ID: 3377500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of monensin and a protonophore on protein degradation, peptide accumulation, and deamination by mixed ruminal microorganisms in vitro.
    Chen GJ; Russell JB
    J Anim Sci; 1991 May; 69(5):2196-203. PubMed ID: 1829725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in ruminal concentrations of microbial ammonia and amino acids due to monensin and time.
    Rodriguez SL; Craig WM; Hembry FG
    J Anim Sci; 1986 Dec; 63(6):1990-5. PubMed ID: 3818471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of amino nitrogen on the energetics of ruminal bacteria and its impact on energy spilling.
    Van Kessel JS; Russell JB
    J Dairy Sci; 1996 Jul; 79(7):1237-43. PubMed ID: 8872717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of peptides and amino acids on fermentation rate and de novo synthesis of amino acids by mixed micro-organisms from the sheep rumen.
    Atasoglu C; Valdés C; Newbold CJ; Wallace RJ
    Br J Nutr; 1999 Apr; 81(4):307-14. PubMed ID: 10999018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of monensin on rumen metabolism in vitro.
    Van Nevel CJ; Demeyer DI
    Appl Environ Microbiol; 1977 Sep; 34(3):251-7. PubMed ID: 911159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of nitrogen into rumen bacterial fractions of steers given protein- and urea-containing diets. Ammonia assimilation into intracellular bacterial amino acids.
    Blake JS; Salter DN; Smith RH
    Br J Nutr; 1983 Nov; 50(3):769-82. PubMed ID: 6639932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.