These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 27573841)
1. A half-second glimpse often lets radiologists identify breast cancer cases even when viewing the mammogram of the opposite breast. Evans KK; Haygood TM; Cooper J; Culpan AM; Wolfe JM Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10292-7. PubMed ID: 27573841 [TBL] [Abstract][Full Text] [Related]
2. Radiologists can detect the 'gist' of breast cancer before any overt signs of cancer appear. Brennan PC; Gandomkar Z; Ekpo EU; Tapia K; Trieu PD; Lewis SJ; Wolfe JM; Evans KK Sci Rep; 2018 Jun; 8(1):8717. PubMed ID: 29880817 [TBL] [Abstract][Full Text] [Related]
3. Using global feedback to induce learning of gist of abnormality in mammograms. Raat EM; Kyle-Davidson C; Evans KK Cogn Res Princ Implic; 2023 Jan; 8(1):3. PubMed ID: 36617595 [TBL] [Abstract][Full Text] [Related]
4. Global processing provides malignancy evidence complementary to the information captured by humans or machines following detailed mammogram inspection. Gandomkar Z; Siviengphanom S; Ekpo EU; Suleiman M; Taba ST; Li T; Xu D; Evans KK; Lewis SJ; Wolfe JM; Brennan PC Sci Rep; 2021 Oct; 11(1):20122. PubMed ID: 34635726 [TBL] [Abstract][Full Text] [Related]
5. Comparable prediction of breast cancer risk from a glimpse or a first impression of a mammogram. Raat EM; Farr I; Wolfe JM; Evans KK Cogn Res Princ Implic; 2021 Nov; 6(1):72. PubMed ID: 34743266 [TBL] [Abstract][Full Text] [Related]
6. Detecting the "gist" of breast cancer in mammograms three years before localized signs of cancer are visible. Evans KK; Culpan AM; Wolfe JM Br J Radiol; 2019 Jul; 92(1099):20190136. PubMed ID: 31166769 [TBL] [Abstract][Full Text] [Related]
7. Impact of compressed breast thickness and dose on lesion detectability in digital mammography: FROC study with simulated lesions in real mammograms. Salvagnini E; Bosmans H; Van Ongeval C; Van Steen A; Michielsen K; Cockmartin L; Struelens L; Marshall NW Med Phys; 2016 Sep; 43(9):5104. PubMed ID: 27587041 [TBL] [Abstract][Full Text] [Related]
8. Early signs of cancer present in the fine detail of mammograms. Raat EM; Evans KK PLoS One; 2023; 18(4):e0282872. PubMed ID: 37018164 [TBL] [Abstract][Full Text] [Related]
9. Signals of global symmetry are important for abnormality detection in mammograms. Kyle-Davidson C; Rakusen LL; Raat E; Bradley R; Evans KK J Med Imaging (Bellingham); 2023 Feb; 10(Suppl 1):S11912. PubMed ID: 37223325 [TBL] [Abstract][Full Text] [Related]
10. Consistency of breast density categories in serial screening mammograms: A comparison between automated and human assessment. Holland K; van Zelst J; den Heeten GJ; Imhof-Tas M; Mann RM; van Gils CH; Karssemeijer N Breast; 2016 Oct; 29():49-54. PubMed ID: 27420382 [TBL] [Abstract][Full Text] [Related]
11. A preliminary report on the role of spatial frequency analysis in the perception of breast cancers missed at mammography screening. Mello-Thoms C; Chapman B Acad Radiol; 2004 Aug; 11(8):894-908. PubMed ID: 15288040 [TBL] [Abstract][Full Text] [Related]
12. Computer-extracted global radiomic features can predict the radiologists' first impression about the abnormality of a screening mammogram. Siviengphanom S; Lewis SJ; Brennan PC; Gandomkar Z Br J Radiol; 2024 Jan; 97(1153):168-179. PubMed ID: 38263826 [TBL] [Abstract][Full Text] [Related]
13. Analysis of framelets for breast cancer diagnosis. Thivya KS; Sakthivel P; Venkata Sai PM Technol Health Care; 2016; 24(1):21-9. PubMed ID: 26409529 [TBL] [Abstract][Full Text] [Related]
14. Gist processing in digital breast tomosynthesis. Wu CC; D'Ardenne NM; Nishikawa RM; Wolfe JM J Med Imaging (Bellingham); 2020 Mar; 7(2):022403. PubMed ID: 31853462 [TBL] [Abstract][Full Text] [Related]
15. Women's features and inter-/intra-rater agreement on mammographic density assessment in full-field digital mammograms (DDM-SPAIN). Pérez-Gómez B; Ruiz F; Martínez I; Casals M; Miranda J; Sánchez-Contador C; Vidal C; Llobet R; Pollán M; Salas D Breast Cancer Res Treat; 2012 Feb; 132(1):287-95. PubMed ID: 22042363 [TBL] [Abstract][Full Text] [Related]
16. A regional registration technique for automated interval change analysis of breast lesions on mammograms. Sanjay-Gopal S; Chan HP; Wilson T; Helvie M; Petrick N; Sahiner B Med Phys; 1999 Dec; 26(12):2669-79. PubMed ID: 10619252 [TBL] [Abstract][Full Text] [Related]
17. Computer-aided detection system performance on current and previous digital mammograms in patients with contralateral metachronous breast cancer. Kim SJ; Moon WK; Cho N; Chang JM Acta Radiol; 2012 May; 53(4):376-81. PubMed ID: 22403080 [TBL] [Abstract][Full Text] [Related]
18. Reliability of radiologists' first impression when interpreting a screening mammogram. Gandomkar Z; Siviengphanom S; Suleiman M; Wong D; Reed W; Ekpo EU; Xu D; Lewis SJ; Evans KK; Wolfe JM; Brennan PC PLoS One; 2023; 18(4):e0284605. PubMed ID: 37098013 [TBL] [Abstract][Full Text] [Related]
19. Decision support system for breast cancer detection using mammograms. Ganesan K; Acharya RU; Chua CK; Min LC; Mathew B; Thomas AK Proc Inst Mech Eng H; 2013 Jul; 227(7):721-32. PubMed ID: 23636749 [TBL] [Abstract][Full Text] [Related]
20. What effect does mammographic breast density have on lesion detection in digital mammography? A L Mousa DS; Ryan EA; Mello-Thoms C; Brennan PC Clin Radiol; 2014 Apr; 69(4):333-41. PubMed ID: 24424328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]