BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 27573884)

  • 1. [Neurofeedback-based motor imagery training for rehabilitation after stroke].
    Dettmers C; Braun N; Büsching I; Hassa T; Debener S; Liepert J
    Nervenarzt; 2016 Oct; 87(10):1074-1081. PubMed ID: 27573884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study.
    Mihara M; Hattori N; Hatakenaka M; Yagura H; Kawano T; Hino T; Miyai I
    Stroke; 2013 Apr; 44(4):1091-8. PubMed ID: 23404723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Treatment of neglect: new therapy approaches].
    Brandt T; Welfringer A
    Nervenarzt; 2016 Oct; 87(10):1068-1073. PubMed ID: 27695885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application and efficacy of combined neurofeedback therapy and imagery training in adolescents with Tourette syndrome.
    Zhuo C; Li L
    J Child Neurol; 2014 Jul; 29(7):965-8. PubMed ID: 23481449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback.
    Ono Y; Wada K; Kurata M; Seki N
    Neuropsychologia; 2018 Jun; 114():134-142. PubMed ID: 29698736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of motor imagery training on gait rehabilitation in sub-acute stroke: A randomized controlled trial.
    Oostra KM; Oomen A; Vanderstraeten G; Vingerhoets G
    J Rehabil Med; 2015 Mar; 47(3):204-9. PubMed ID: 25403275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke.
    Hong IK; Choi JB; Lee JH
    Stroke; 2012 Sep; 43(9):2506-9. PubMed ID: 22798329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action observation training for functional activities after stroke: a pilot randomized controlled trial.
    Kim JH; Lee BH
    NeuroRehabilitation; 2013; 33(4):565-74. PubMed ID: 24029010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Intensity Chronic Stroke Motor Imagery Neurofeedback Training at Home: Three Case Reports.
    Zich C; Debener S; Schweinitz C; Sterr A; Meekes J; Kranczioch C
    Clin EEG Neurosci; 2017 Nov; 48(6):403-412. PubMed ID: 28677413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of motor imagery training on balance and gait abilities in post-stroke patients: a randomized controlled trial.
    Cho HY; Kim JS; Lee GC
    Clin Rehabil; 2013 Aug; 27(8):675-80. PubMed ID: 23129815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-machine interface of upper limb recovery in stroke patients rehabilitation: A systematic review.
    Carvalho R; Dias N; Cerqueira JJ
    Physiother Res Int; 2019 Apr; 24(2):e1764. PubMed ID: 30609208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study.
    Shindo K; Kawashima K; Ushiba J; Ota N; Ito M; Ota T; Kimura A; Liu M
    J Rehabil Med; 2011 Oct; 43(10):951-7. PubMed ID: 21947184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of low-cost wireless neurofeedback to modulate brain activity during motor imagery.
    Power L; Neyedli HF; Boe SG; Bardouille T
    Biomed Phys Eng Express; 2020 Apr; 6(3):035024. PubMed ID: 33438669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review.
    García Carrasco D; Aboitiz Cantalapiedra J
    Neurologia; 2016; 31(1):43-52. PubMed ID: 23601759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of fMRI and Simultaneous fMRI-EEG Neurofeedback in Post-Stroke Motor Rehabilitation.
    Bezmaternykh DD; Kalgin KV; Maximova PE; Mel'nikov MY; Petrovskii ED; Predtechenskaya EV; Savelov AA; Semenikhina AA; Tsaplina TN; Shtark MB; Shurunova AV
    Bull Exp Biol Med; 2021 Jul; 171(3):379-383. PubMed ID: 34292446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Motor imagery: a systematic review of its effectiveness in the rehabilitation of the upper limb following a stroke].
    Fernandez-Gomez E; Sanchez-Cabeza A
    Rev Neurol; 2018 Mar; 66(5):137-146. PubMed ID: 29480509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical assessment of motor imagery after stroke.
    Malouin F; Richards CL; Durand A; Doyon J
    Neurorehabil Neural Repair; 2008; 22(4):330-40. PubMed ID: 18326057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor imagery in stroke patients, or plegic patients with spinal cord or peripheral diseases.
    Dettmers C; Benz M; Liepert J; Rockstroh B
    Acta Neurol Scand; 2012 Oct; 126(4):238-47. PubMed ID: 22587653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mental imagery for promoting relearning for people after stroke: a randomized controlled trial.
    Liu KP; Chan CC; Lee TM; Hui-Chan CW
    Arch Phys Med Rehabil; 2004 Sep; 85(9):1403-8. PubMed ID: 15375808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mental chronometry and mental rotation abilities in stroke patients with different degrees of sensory deficit.
    Liepert J; Büsching I; Sehle A; Schoenfeld MA
    Restor Neurol Neurosci; 2016 Nov; 34(6):907-914. PubMed ID: 27689548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.