BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 27573884)

  • 21. Computer Imagery and Neurological Rehabilitation: On the Use of Augmented Reality in Sensorimotor Training to Step Up Naturally Occurring Cortical Reorganization in Patients Following Stroke.
    Correa-Agudelo E; Ferrin C; Velez P; Gomez JD
    Stud Health Technol Inform; 2016; 220():71-6. PubMed ID: 27046556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Meta-analysis on the effect of mental imagery on motor recovery of the hemiplegic upper extremity function.
    Kho AY; Liu KP; Chung RC
    Aust Occup Ther J; 2014 Apr; 61(2):38-48. PubMed ID: 24138081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation.
    Mihara M; Miyai I; Hattori N; Hatakenaka M; Yagura H; Kawano T; Okibayashi M; Danjo N; Ishikawa A; Inoue Y; Kubota K
    PLoS One; 2012; 7(3):e32234. PubMed ID: 22396753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motor imagery: a backdoor to the motor system after stroke?
    Sharma N; Pomeroy VM; Baron JC
    Stroke; 2006 Jul; 37(7):1941-52. PubMed ID: 16741183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Arm rehabilitation : Current concepts and therapeutic options].
    Platz T; Schmuck L
    Nervenarzt; 2016 Oct; 87(10):1057-1061. PubMed ID: 27531207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Practical research-based guidance for motor imagery practice in neurorehabilitation.
    Bovend'eerdt TJ; Dawes H; Sackley C; Wade DT
    Disabil Rehabil; 2012; 34(25):2192-200. PubMed ID: 22533623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using mental practice in stroke rehabilitation: a framework.
    Braun S; Kleynen M; Schols J; Schack T; Beurskens A; Wade D
    Clin Rehabil; 2008 Jul; 22(7):579-91. PubMed ID: 18586809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study.
    Sun L; Yin D; Zhu Y; Fan M; Zang L; Wu Y; Jia J; Bai Y; Zhu B; Hu Y
    Neuroradiology; 2013 Jul; 55(7):913-25. PubMed ID: 23619700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of motor imagery of swallow EEG signals based on the dual-tree complex wavelet transform and adaptive model selection.
    Yang H; Guan C; Chua KS; Chok SS; Wang CC; Soon PK; Tang CK; Ang KK
    J Neural Eng; 2014 Jun; 11(3):035016. PubMed ID: 24836742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization of motor imagery in upper limb rehabilitation: a systematic scoping review.
    Harris JE; Hebert A
    Clin Rehabil; 2015 Nov; 29(11):1092-107. PubMed ID: 25604911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrated motor imagery program to improve functional task performance in neurorehabilitation: a single-blind randomized controlled trial.
    Bovend'Eerdt TJ; Dawes H; Sackley C; Izadi H; Wade DT
    Arch Phys Med Rehabil; 2010 Jun; 91(6):939-46. PubMed ID: 20510987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classification of motor imagery performance in acute stroke.
    Tangwiriyasakul C; Mocioiu V; van Putten MJ; Rutten WL
    J Neural Eng; 2014 Jun; 11(3):036001. PubMed ID: 24737062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor imagery and action observation: cognitive tools for rehabilitation.
    Mulder T
    J Neural Transm (Vienna); 2007; 114(10):1265-78. PubMed ID: 17579805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis.
    Dunsky A; Dickstein R; Marcovitz E; Levy S; Deutsch JE
    Arch Phys Med Rehabil; 2008 Aug; 89(8):1580-8. PubMed ID: 18674992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mirror neuron system: a neural substrate for methods in stroke rehabilitation.
    Garrison KA; Winstein CJ; Aziz-Zadeh L
    Neurorehabil Neural Repair; 2010 Jun; 24(5):404-12. PubMed ID: 20207851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of neurofeedback and electromyographic-biofeedback therapy on improving hand function in stroke patients.
    Rayegani SM; Raeissadat SA; Sedighipour L; Rezazadeh IM; Bahrami MH; Eliaspour D; Khosrawi S
    Top Stroke Rehabil; 2014; 21(2):137-51. PubMed ID: 24710974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Future directions of stroke rehabilitation].
    Kakuda W
    Rinsho Shinkeigaku; 2020 Mar; 60(3):181-186. PubMed ID: 32101849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke.
    Várkuti B; Guan C; Pan Y; Phua KS; Ang KK; Kuah CW; Chua K; Ang BT; Birbaumer N; Sitaram R
    Neurorehabil Neural Repair; 2013 Jan; 27(1):53-62. PubMed ID: 22645108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke.
    Kim JS; Oh DW; Kim SY; Choi JD
    Clin Rehabil; 2011 Feb; 25(2):134-45. PubMed ID: 20943715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motor imagery to enhance recovery after subcortical stroke: who might benefit, daily dose, and potential effects.
    Simmons L; Sharma N; Baron JC; Pomeroy VM
    Neurorehabil Neural Repair; 2008; 22(5):458-67. PubMed ID: 18780881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.