These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27574019)

  • 21. Laterally assembled nanowires for ultrathin broadband solar absorbers.
    Song KD; Kempa TJ; Park HG; Kim SK
    Opt Express; 2014 May; 22 Suppl 3():A992-A1000. PubMed ID: 24922405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires.
    Diedenhofen SL; Janssen OT; Grzela G; Bakkers EP; Gómez Rivas J
    ACS Nano; 2011 Mar; 5(3):2316-23. PubMed ID: 21366282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling of light into nanowire arrays and subsequent absorption.
    Anttu N; Xu HQ
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7183-7. PubMed ID: 21137893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical response of wurtzite and zinc blende GaP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Berg A; Lehmann S; Pistol ME
    Opt Express; 2015 Nov; 23(23):30177-87. PubMed ID: 26698498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical design of spectrally selective interlayers for perovskite/silicon heterojunction tandem solar cells.
    Bittkau K; Kirchartz T; Rau U
    Opt Express; 2018 Sep; 26(18):A750-A760. PubMed ID: 30184834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.
    Kranz L; Abate A; Feurer T; Fu F; Avancini E; Löckinger J; Reinhard P; Zakeeruddin SM; Grätzel M; Buecheler S; Tiwari AN
    J Phys Chem Lett; 2015 Jul; 6(14):2676-81. PubMed ID: 26266847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells.
    Löper P; Moon SJ; de Nicolas SM; Niesen B; Ledinsky M; Nicolay S; Bailat J; Yum JH; De Wolf S; Ballif C
    Phys Chem Chem Phys; 2015 Jan; 17(3):1619-29. PubMed ID: 25437303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical consideration of III-V nanowire/Si triple-junction solar cells.
    Wen L; Li X; Zhao Z; Bu S; Zeng X; Huang JH; Wang Y
    Nanotechnology; 2012 Dec; 23(50):505202. PubMed ID: 23182996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas.
    Nie KY; Li J; Chen X; Xu Y; Tu X; Ren FF; Du Q; Fu L; Kang L; Tang K; Gu S; Zhang R; Wu P; Zheng Y; Tan HH; Jagadish C; Ye J
    Sci Rep; 2017 Aug; 7(1):7503. PubMed ID: 28790363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell.
    Wang Y; Zhang Y; Zhang D; He S; Li X
    Nanoscale Res Lett; 2015 Dec; 10(1):968. PubMed ID: 26123270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells.
    Wang B; Stevens E; Leu PW
    Opt Express; 2014 Mar; 22 Suppl 2():A386-95. PubMed ID: 24922248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tandem organic solar cells containing plasmonic nanospheres and nanostars for enhancement in short circuit current density.
    Kumar K; Das A; Kumawat UK; Dhawan A
    Opt Express; 2019 Oct; 27(22):31599-31620. PubMed ID: 31684391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High efficiency silicon solar cell based on asymmetric nanowire.
    Ko MD; Rim T; Kim K; Meyyappan M; Baek CK
    Sci Rep; 2015 Jul; 5():11646. PubMed ID: 26152914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements.
    Otnes G; Barrigón E; Sundvall C; Svensson KE; Heurlin M; Siefer G; Samuelson L; Åberg I; Borgström MT
    Nano Lett; 2018 May; 18(5):3038-3046. PubMed ID: 29701974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detailed balance analysis of vertical GaAs nanowire array solar cells: exceeding the Shockley Queisser limit.
    Haghanifar S; Leu PW
    Opt Express; 2022 May; 30(10):16145-16158. PubMed ID: 36221465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The generalized Shockley-Queisser limit for nanostructured solar cells.
    Xu Y; Gong T; Munday JN
    Sci Rep; 2015 Sep; 5():13536. PubMed ID: 26329479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of growth conditions on the performance of InP nanowire solar cells.
    Cavalli A; Cui Y; Kölling S; Verheijen MA; Plissard SR; Wang J; Koenraad PM; Haverkort JE; Bakkers EP
    Nanotechnology; 2016 Nov; 27(45):454003. PubMed ID: 27727149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hot-Carrier Extraction in Nanowire-Nanoantenna Photovoltaic Devices.
    Chen IJ; Limpert S; Metaferia W; Thelander C; Samuelson L; Capasso F; Burke AM; Linke H
    Nano Lett; 2020 Jun; 20(6):4064-4072. PubMed ID: 32347731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.