These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 27574199)

  • 41. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.
    Ozaki H; Iwasaki W
    Comput Biol Chem; 2016 Aug; 63():62-72. PubMed ID: 26971251
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RSAT 2011: regulatory sequence analysis tools.
    Thomas-Chollier M; Defrance M; Medina-Rivera A; Sand O; Herrmann C; Thieffry D; van Helden J
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W86-91. PubMed ID: 21715389
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 44. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 45. STAMP: a web tool for exploring DNA-binding motif similarities.
    Mahony S; Benos PV
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W253-8. PubMed ID: 17478497
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioinformatic Identification of Conserved Cis-Sequences in Coregulated Genes.
    Bülow L; Hehl R
    Methods Mol Biol; 2016; 1482():233-45. PubMed ID: 27557771
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient computation of motif discovery on Intel Many Integrated Core (MIC) Architecture.
    Peng S; Cheng M; Huang K; Cui Y; Zhang Z; Guo R; Zhang X; Yang S; Liao X; Lu Y; Zou Q; Shi B
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):282. PubMed ID: 30367570
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RSAT::Plants: Motif Discovery Within Clusters of Upstream Sequences in Plant Genomes.
    Contreras-Moreira B; Castro-Mondragon JA; Rioualen C; Cantalapiedra CP; van Helden J
    Methods Mol Biol; 2016; 1482():279-95. PubMed ID: 27557774
    [TBL] [Abstract][Full Text] [Related]  

  • 49. JASPAR: an open-access database for eukaryotic transcription factor binding profiles.
    Sandelin A; Alkema W; Engström P; Wasserman WW; Lenhard B
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D91-4. PubMed ID: 14681366
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using PhyloCon to identify conserved regulatory motifs.
    Wang T
    Curr Protoc Bioinformatics; 2007 Sep; Chapter 2():Unit 2.12. PubMed ID: 18428790
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS; Brutlag DL; Liu JS
    Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Probabilistic models for semisupervised discriminative motif discovery in DNA sequences.
    Kim JK; Choi S
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1309-17. PubMed ID: 21778525
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Practical strategies for discovering regulatory DNA sequence motifs.
    MacIsaac KD; Fraenkel E
    PLoS Comput Biol; 2006 Apr; 2(4):e36. PubMed ID: 16683017
    [No Abstract]   [Full Text] [Related]  

  • 54. Dispom: a discriminative de-novo motif discovery tool based on the jstacs library.
    Grau J; Keilwagen J; Gohr A; Paponov IA; Posch S; Seifert M; Strickert M; Grosse I
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340006. PubMed ID: 23427988
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Discovering novel cis-regulatory motifs using functional networks.
    Ettwiller LM; Rung J; Birney E
    Genome Res; 2003 May; 13(5):883-95. PubMed ID: 12727907
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm.
    Zhang Z; Chang CW; Hugo W; Cheung E; Sung WK
    J Comput Biol; 2013 Mar; 20(3):237-48. PubMed ID: 23461573
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PeakRegressor identifies composite sequence motifs responsible for STAT1 binding sites and their potential rSNPs.
    Pessiot JF; Chiba H; Hyakkoku H; Taniguchi T; Fujibuchi W
    PLoS One; 2010 Aug; 5(8):e11881. PubMed ID: 20806061
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A discriminative model for identifying spatial cis-regulatory modules.
    Segal E; Sharan R
    J Comput Biol; 2005; 12(6):822-34. PubMed ID: 16108719
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finding weak motifs in DNA sequences.
    Sze SH; Gelfand MS; Pevzner PA
    Pac Symp Biocomput; 2002; ():235-46. PubMed ID: 11928479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The MEME Suite.
    Bailey TL; Johnson J; Grant CE; Noble WS
    Nucleic Acids Res; 2015 Jul; 43(W1):W39-49. PubMed ID: 25953851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.