These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 27574315)

  • 1. How networks communicate: propagation patterns in spontaneous brain activity.
    Mitra A; Raichle ME
    Philos Trans R Soc Lond B Biol Sci; 2016 Oct; 371(1705):. PubMed ID: 27574315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
    Keinänen T; Rytky S; Korhonen V; Huotari N; Nikkinen J; Tervonen O; Palva JM; Kiviniemi V
    J Neurosci Res; 2018 Oct; 96(10):1689-1698. PubMed ID: 29761531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lag structure in resting-state fMRI.
    Mitra A; Snyder AZ; Hacker CD; Raichle ME
    J Neurophysiol; 2014 Jun; 111(11):2374-91. PubMed ID: 24598530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI.
    Hiltunen T; Kantola J; Abou Elseoud A; Lepola P; Suominen K; Starck T; Nikkinen J; Remes J; Tervonen O; Palva S; Kiviniemi V; Palva JM
    J Neurosci; 2014 Jan; 34(2):356-62. PubMed ID: 24403137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. fMRI resting state networks define distinct modes of long-distance interactions in the human brain.
    De Luca M; Beckmann CF; De Stefano N; Matthews PM; Smith SM
    Neuroimage; 2006 Feb; 29(4):1359-67. PubMed ID: 16260155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplitudes of resting-state functional networks - investigation into their correlates and biophysical properties.
    Lee S; Bijsterbosch JD; Almagro FA; Elliott L; McCarthy P; Taschler B; Sala-Llonch R; Beckmann CF; Duff EP; Smith SM; Douaud G
    Neuroimage; 2023 Jan; 265():119779. PubMed ID: 36462729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resting-state blood oxygen level-dependent functional magnetic resonance imaging for presurgical planning.
    Kamran M; Hacker CD; Allen MG; Mitchell TJ; Leuthardt EC; Snyder AZ; Shimony JS
    Neuroimaging Clin N Am; 2014 Nov; 24(4):655-69. PubMed ID: 25441506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infraslow Electroencephalographic and Dynamic Resting State Network Activity.
    Grooms JK; Thompson GJ; Pan WJ; Billings J; Schumacher EH; Epstein CM; Keilholz SD
    Brain Connect; 2017 Jun; 7(5):265-280. PubMed ID: 28462586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.
    Chen JE; Glover GH
    Neuroimage; 2015 Feb; 107():207-218. PubMed ID: 25497686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral characteristics of resting state networks.
    Niazy RK; Xie J; Miller K; Beckmann CF; Smith SM
    Prog Brain Res; 2011; 193():259-76. PubMed ID: 21854968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lag threads organize the brain's intrinsic activity.
    Mitra A; Snyder AZ; Blazey T; Raichle ME
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):E2235-44. PubMed ID: 25825720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal scaling properties and spatial synchronization of spontaneous blood oxygenation level-dependent (BOLD) signal fluctuations in rat sensorimotor network at different levels of isoflurane anesthesia.
    Wang K; van Meer MP; van der Marel K; van der Toorn A; Xu L; Liu Y; Viergever MA; Jiang T; Dijkhuizen RM
    NMR Biomed; 2011 Jan; 24(1):61-7. PubMed ID: 20669170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep.
    Mitra A; Snyder AZ; Tagliazucchi E; Laufs H; Raichle ME
    Elife; 2015 Nov; 4():. PubMed ID: 26551562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of Propagated Intrinsic Brain Activity in Individual Humans.
    Raut RV; Mitra A; Marek S; Ortega M; Snyder AZ; Tanenbaum A; Laumann TO; Dosenbach NUF; Raichle ME
    Cereb Cortex; 2020 Mar; 30(3):1716-1734. PubMed ID: 31504262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal dynamics of spontaneous MEG activity in brain networks.
    de Pasquale F; Della Penna S; Snyder AZ; Lewis C; Mantini D; Marzetti L; Belardinelli P; Ciancetta L; Pizzella V; Romani GL; Corbetta M
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6040-5. PubMed ID: 20304792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.
    Kannurpatti SS; Sanganahalli BG; Herman P; Hyder F
    NMR Biomed; 2015 Nov; 28(11):1579-88. PubMed ID: 26439799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks.
    Musso F; Brinkmeyer J; Mobascher A; Warbrick T; Winterer G
    Neuroimage; 2010 Oct; 52(4):1149-61. PubMed ID: 20139014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.