These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 27574704)

  • 1. A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism.
    Arakawa H
    Sci Adv; 2016 Aug; 2(8):e1600699. PubMed ID: 27574704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas "Non-Target" Sites Inhibit On-Target Cutting Rates.
    Moreb EA; Hutmacher M; Lynch MD
    CRISPR J; 2020 Dec; 3(6):550-561. PubMed ID: 33346713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief overview.
    Karvelis T; Gasiunas G; Siksnys V
    Methods; 2017 May; 121-122():3-8. PubMed ID: 28344037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
    Mekler V; Kuznedelov K; Severinov K
    J Biol Chem; 2020 May; 295(19):6509-6517. PubMed ID: 32241913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Method to Convert mRNA into a Guide RNA (gRNA) Library without Requiring Previous Bioinformatics Knowledge of the Organism.
    Arakawa H
    Bio Protoc; 2017 May; 7(10):e2319. PubMed ID: 34541069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Prediction of CRISPR/Cas9 Target Sites Reveals Potential Off-Target Risks in Human and Mouse.
    Wang Q; Ui-Tei K
    Methods Mol Biol; 2017; 1630():43-53. PubMed ID: 28643248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.
    Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y
    J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity.
    Hiranniramol K; Chen Y; Wang X
    Methods Mol Biol; 2020; 2115():351-364. PubMed ID: 32006410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. gRNA validation for wheat genome editing with the CRISPR-Cas9 system.
    Arndell T; Sharma N; Langridge P; Baumann U; Watson-Haigh NS; Whitford R
    BMC Biotechnol; 2019 Oct; 19(1):71. PubMed ID: 31684940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 mediated high efficiency knockout of the eye color gene Vermillion in Helicoverpa zea (Boddie).
    Perera OP; Little NS; Pierce CA
    PLoS One; 2018; 13(5):e0197567. PubMed ID: 29771955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A catalogue of biochemically diverse CRISPR-Cas9 orthologs.
    Gasiunas G; Young JK; Karvelis T; Kazlauskas D; Urbaitis T; Jasnauskaite M; Grusyte MM; Paulraj S; Wang PH; Hou Z; Dooley SK; Cigan M; Alarcon C; Chilcoat ND; Bigelyte G; Curcuru JL; Mabuchi M; Sun Z; Fuchs RT; Schildkraut E; Weigele PR; Jack WE; Robb GB; Venclovas Č; Siksnys V
    Nat Commun; 2020 Nov; 11(1):5512. PubMed ID: 33139742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Making point mutations in Escherichia coli BL21 genome using the CRISPR-Cas9 system.
    Wang X; He J; Le K
    FEMS Microbiol Lett; 2018 Jul; 365(14):. PubMed ID: 29596631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.
    Maxwell CS; Jacobsen T; Marshall R; Noireaux V; Beisel CL
    Methods; 2018 Jul; 143():48-57. PubMed ID: 29486239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of Cas9, gRNA and PAM: Key to further regulate genome editing and its applications.
    Gupta R; Gupta D; Ahmed KT; Dey D; Singh R; Swarnakar S; Ravichandiran V; Roy S; Ghosh D
    Prog Mol Biol Transl Sci; 2021; 178():85-98. PubMed ID: 33685601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-gRNA Design.
    Pallarès Masmitjà M; Knödlseder N; Güell M
    Methods Mol Biol; 2019; 1961():3-11. PubMed ID: 30912036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR Guide RNA Design Guidelines for Efficient Genome Editing.
    Schindele P; Wolter F; Puchta H
    Methods Mol Biol; 2020; 2166():331-342. PubMed ID: 32710418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Microbial Modification Tools to Convert Lipids into Other Value-Added Products.
    Kumari P; Yusuf F; Gaur NA
    Methods Mol Biol; 2019; 1995():161-171. PubMed ID: 31148128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.