These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 27574807)

  • 1. Efficient Biexciton Interaction in Perovskite Quantum Dots Under Weak and Strong Confinement.
    CastaƱeda JA; Nagamine G; Yassitepe E; Bonato LG; Voznyy O; Hoogland S; Nogueira AF; Sargent EH; Cruz CH; Padilha LA
    ACS Nano; 2016 Sep; 10(9):8603-9. PubMed ID: 27574807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots.
    Makarov NS; Guo S; Isaienko O; Liu W; Robel I; Klimov VI
    Nano Lett; 2016 Apr; 16(4):2349-62. PubMed ID: 26882294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.
    Wu K; Lim J; Klimov VI
    ACS Nano; 2017 Aug; 11(8):8437-8447. PubMed ID: 28723072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Photon Absorption and Two-Photon-Induced Gain in Perovskite Quantum Dots.
    Nagamine G; Rocha JO; Bonato LG; Nogueira AF; Zaharieva Z; Watt AAR; de Brito Cruz CH; Padilha LA
    J Phys Chem Lett; 2018 Jun; 9(12):3478-3484. PubMed ID: 29882410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auger Recombination Lifetime Scaling for Type I and Quasi-Type II Core/Shell Quantum Dots.
    Philbin JP; Rabani E
    J Phys Chem Lett; 2020 Jul; 11(13):5132-5138. PubMed ID: 32513003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Area- and Thickness-Dependent Biexciton Auger Recombination in Colloidal CdSe Nanoplatelets: Breaking the "Universal Volume Scaling Law".
    Li Q; Lian T
    Nano Lett; 2017 May; 17(5):3152-3158. PubMed ID: 28418671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Multiexcitonic Emission in Metal-Halide Perovskites by Quantum Confinement.
    Strandell D; Dirin D; Zenatti D; Nagpal P; Ghosh A; Raino G; Kovalenko MV; Kambhampati P
    ACS Nano; 2023 Dec; 17(24):24910-24918. PubMed ID: 38079478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to improve the structural stabilities of halide perovskite quantum dots: review of various strategies to enhance the structural stabilities of halide perovskite quantum dots.
    Kim D; Yun T; An S; Lee CL
    Nano Converg; 2024 Jan; 11(1):4. PubMed ID: 38279984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination.
    Bae WK; Padilha LA; Park YS; McDaniel H; Robel I; Pietryga JM; Klimov VI
    ACS Nano; 2013 Apr; 7(4):3411-9. PubMed ID: 23521208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Dielectric Screening for Auger Suppression in CdSe/CdS Quantum Dots by Epitaxial Growth of ZnS Shell.
    Hou X; Qin H; Peng X
    Nano Lett; 2021 May; 21(9):3871-3878. PubMed ID: 33938759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size- and Halide-Dependent Auger Recombination in Lead Halide Perovskite Nanocrystals.
    Li Y; Luo X; Ding T; Lu X; Wu K
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14292-14295. PubMed ID: 32476193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biexciton Blinking in CdSe-Based Quantum Dots.
    Vonk SJW; Rabouw FT
    J Phys Chem Lett; 2023 Jun; 14(23):5353-5361. PubMed ID: 37276380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auger recombination of biexcitons and negative and positive trions in individual quantum dots.
    Park YS; Bae WK; Pietryga JM; Klimov VI
    ACS Nano; 2014 Jul; 8(7):7288-96. PubMed ID: 24909861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perovskite Quantum Dots and Their Application in Light-Emitting Diodes.
    Wang HC; Bao Z; Tsai HY; Tang AC; Liu RS
    Small; 2018 Jan; 14(1):. PubMed ID: 29194973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of Photoluminescence Blinking Mechanism and Multiexciton Dynamics in Hybrid Organic-Inorganic Perovskite Quantum Dots.
    Kim T; Jung SI; Ham S; Chung H; Kim D
    Small; 2019 Aug; 15(33):e1900355. PubMed ID: 31237396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy.
    Park YS; Bae WK; Padilha LA; Pietryga JM; Klimov VI
    Nano Lett; 2014 Feb; 14(2):396-402. PubMed ID: 24397307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of interface-potential smoothness and wavefunction delocalization on Auger recombination in colloidal CdSe-based core/shell quantum dots.
    Hou X; Li Y; Qin H; Peng X
    J Chem Phys; 2019 Dec; 151(23):234703. PubMed ID: 31864257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces.
    Park YS; Bae WK; Baker T; Lim J; Klimov VI
    Nano Lett; 2015 Nov; 15(11):7319-28. PubMed ID: 26397312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly emissive multiexcitons in steady-state photoluminescence of individual "giant" CdSe/CdS Core/Shell nanocrystals.
    Htoon H; Malko AV; Bussian D; Vela J; Chen Y; Hollingsworth JA; Klimov VI
    Nano Lett; 2010 Jul; 10(7):2401-7. PubMed ID: 20515013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic Design of CdSe/CdS Core-Shell Quantum Dots with Suppressed Auger Recombination.
    Jain A; Voznyy O; Hoogland S; Korkusinski M; Hawrylak P; Sargent EH
    Nano Lett; 2016 Oct; 16(10):6491-6496. PubMed ID: 27668685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.