These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27574815)

  • 1. Removal of nickel by homogeneous granulation in a fluidized-bed reactor.
    Ballesteros FC; Salcedo AF; Vilando AC; Huang YH; Lu MC
    Chemosphere; 2016 Dec; 164():59-67. PubMed ID: 27574815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive effect of copper and nickel recovery with carbonate in the fluidized-bed homogeneous granulation process.
    Quimada NE; De Luna MDG; Vilando AC; Lu MC
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12414-12426. PubMed ID: 34114143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced recovery of aluminum from wastewater using a fluidized bed homogeneously dispersed granular reactor.
    Vilando AC; Caparanga AR; Lu MC
    Chemosphere; 2019 May; 223():330-341. PubMed ID: 30784739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal removal from aqueous solution in sequential fluidized-bed reactors.
    Lee CI; Yang WF
    Environ Technol; 2005 Dec; 26(12):1345-53. PubMed ID: 16372569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond carbon capture towards resource recovery and utilization: fluidized-bed homogeneous granulation of calcium carbonate from captured CO
    Huang YH; Garcia-Segura S; de Luna MDG; Sioson AS; Lu MC
    Chemosphere; 2020 Jul; 250():126325. PubMed ID: 32234625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfide recovery using fluidized bed homogeneous crystallization technology to produce nickel sulfide from wastewater that contains sulfides.
    Liao PL; Mahasti N; Effendi LW; Huang YH
    Environ Res; 2023 Nov; 236(Pt 1):116782. PubMed ID: 37517497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of Cu(II) from aqueous solution in a fluidized-bed reactor.
    Lee CI; Yang WF; Hsieh CI
    Chemosphere; 2004 Dec; 57(9):1173-80. PubMed ID: 15504477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidized-bed denitrification of mining water tolerates high nickel concentrations.
    Zou G; Papirio S; van Hullebusch ED; Puhakka JA
    Bioresour Technol; 2015 Mar; 179():284-290. PubMed ID: 25549902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid restoration of methanogenesis in an acidified UASB reactor treating 2,4,6-trichlorophenol (TCP).
    Díaz-Báez MC; Valderrama-Rincon JD
    J Hazard Mater; 2017 Feb; 324(Pt B):599-604. PubMed ID: 27889180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam.
    Lee CG; Lee S; Park JA; Park C; Lee SJ; Kim SB; An B; Yun ST; Lee SH; Choi JW
    Chemosphere; 2017 Jan; 166():203-211. PubMed ID: 27697709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions.
    Shih YJ; Abarca RRM; de Luna MDG; Huang YH; Lu MC
    Chemosphere; 2017 Apr; 173():466-473. PubMed ID: 28135681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel ion removal from wastewater using the microbial electrolysis cell.
    Qin B; Luo H; Liu G; Zhang R; Chen S; Hou Y; Luo Y
    Bioresour Technol; 2012 Oct; 121():458-61. PubMed ID: 22850172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive removal of Cu-EDTA and Ni-EDTA via microwave-enhanced Fenton oxidation with hydroxide precipitation.
    Lin Q; Pan H; Yao K; Pan Y; Long W
    Water Sci Technol; 2015; 72(7):1184-90. PubMed ID: 26398034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.
    Rahaman MS; Mavinic DS; Meikleham A; Ellis N
    Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of high crystalline LDH sludge for removing Cu and Zn from wastewater by controlled double-jet precipitation.
    Wu L; Peng B; Li Q; Wang Q; Yan X; Lin Q; Ji C
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19665-19675. PubMed ID: 31079305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sludge granulation in an UASB-moving bed biofilm hybrid reactor for efficient organic matter removal and nitrogen removal in biofilm reactor.
    Chatterjee P; Ghangrekar MM; Rao S
    Environ Technol; 2018 Feb; 39(3):298-307. PubMed ID: 28278088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Start-up of sequencing batch reactor with Thiosphaera pantotropha for treatment of high-strength nitrogenous wastewater and sludge characterization.
    Phatak PS; Trivedi S; Garg A; Gupta SK; Mukherji S
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20065-20080. PubMed ID: 26965273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of divalent nickel on the anammox process in a UASB reactor.
    Wu D; Zhang Q; Xia WJ; Shi ZJ; Huang BC; Fan NS; Jin RC
    Chemosphere; 2019 Jul; 226():934-944. PubMed ID: 31509923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of real-scale anaerobic baffled reactor-swim bed tank system in treating fishmeal wastewater.
    Putra AA; Watari T; Hatamoto M; Konda T; Matsuzaki K; Kurniawan TH; Yamaguchi T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(12):1415-1423. PubMed ID: 32909871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.