BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 27574873)

  • 1. Musicianship and Tone Language Experience Are Associated with Differential Changes in Brain Signal Variability.
    Hutka S; Carpentier SM; Bidelman GM; Moreno S; McIntosh AR
    J Cogn Neurosci; 2016 Dec; 28(12):2044-2058. PubMed ID: 27574873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pitch expertise is not created equal: Cross-domain effects of musicianship and tone language experience on neural and behavioural discrimination of speech and music.
    Hutka S; Bidelman GM; Moreno S
    Neuropsychologia; 2015 May; 71():52-63. PubMed ID: 25797590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Musical experience facilitates lexical tone processing among Mandarin speakers: Behavioral and neural evidence.
    Tang W; Xiong W; Zhang YX; Dong Q; Nan Y
    Neuropsychologia; 2016 Oct; 91():247-253. PubMed ID: 27503769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem.
    Bidelman GM; Gandour JT; Krishnan A
    J Cogn Neurosci; 2011 Feb; 23(2):425-34. PubMed ID: 19925180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: evidence for bidirectionality between the domains of language and music.
    Bidelman GM; Hutka S; Moreno S
    PLoS One; 2013; 8(4):e60676. PubMed ID: 23565267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are lexical tones musical? Native language's influence on neural response to pitch in different domains.
    Chen A; Peter V; Wijnen F; Schnack H; Burnham D
    Brain Lang; 2018; 180-182():31-41. PubMed ID: 29689493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tone-language speakers show hemispheric specialization and differential cortical processing of contour and interval cues for pitch.
    Bidelman GM; Chung WL
    Neuroscience; 2015 Oct; 305():384-92. PubMed ID: 26265549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perception of pitch height in lexical and musical tones by English-speaking musicians and nonmusicians.
    Lee CY; Lekich A; Zhang Y
    J Acoust Soc Am; 2014 Mar; 135(3):1607-15. PubMed ID: 24606295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neural networks involved in pitch labeling of absolute pitch musicians.
    Wu C; Kirk IJ; Hamm JP; Lim VK
    Neuroreport; 2008 May; 19(8):851-4. PubMed ID: 18463500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Musical Expertise Shapes Functional and Structural Brain Networks Independent of Absolute Pitch Ability.
    Leipold S; Klein C; Jäncke L
    J Neurosci; 2021 Mar; 41(11):2496-2511. PubMed ID: 33495199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Musicians and tone-language speakers share enhanced brainstem encoding but not perceptual benefits for musical pitch.
    Bidelman GM; Gandour JT; Krishnan A
    Brain Cogn; 2011 Oct; 77(1):1-10. PubMed ID: 21835531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Musical training shapes neural responses to melodic and prosodic expectation.
    Zioga I; Di Bernardi Luft C; Bhattacharya J
    Brain Res; 2016 Nov; 1650():267-282. PubMed ID: 27622645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Music training enhances the automatic neural processing of foreign speech sounds.
    Intartaglia B; White-Schwoch T; Kraus N; Schön D
    Sci Rep; 2017 Oct; 7(1):12631. PubMed ID: 28974695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural processing of musical timbre by musicians, nonmusicians, and musicians possessing absolute pitch.
    Crummer GC; Walton JP; Wayman JW; Hantz EC; Frisina RD
    J Acoust Soc Am; 1994 May; 95(5 Pt 1):2720-7. PubMed ID: 8207143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Musicians detect pitch violation in a foreign language better than nonmusicians: behavioral and electrophysiological evidence.
    Marques C; Moreno S; Castro SL; Besson M
    J Cogn Neurosci; 2007 Sep; 19(9):1453-63. PubMed ID: 17714007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How musical experience affects tone perception efficiency by musicians of tonal and non-tonal speakers?
    Chen S; Zhu Y; Wayland R; Yang Y
    PLoS One; 2020; 15(5):e0232514. PubMed ID: 32384088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Mandarin tones by English-speaking musicians and nonmusicians.
    Lee CY; Hung TH
    J Acoust Soc Am; 2008 Nov; 124(5):3235-48. PubMed ID: 19045807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speaking a tone language enhances musical pitch perception in 3-5-year-olds.
    Creel SC; Weng M; Fu G; Heyman GD; Lee K
    Dev Sci; 2018 Jan; 21(1):. PubMed ID: 28093846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of musical expertise on segmental and tonal processing in Mandarin Chinese.
    Marie C; Delogu F; Lampis G; Belardinelli MO; Besson M
    J Cogn Neurosci; 2011 Oct; 23(10):2701-15. PubMed ID: 20946053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.