BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27574966)

  • 1. Modulating Arm Swing Symmetry with Cognitive Load: A Window on Rhythmic Spinal Locomotor Networks in Humans?
    Killeen T; Easthope CS; Filli L; Linnebank M; Curt A; Bolliger M; Zörner B
    J Neurotrauma; 2017 May; 34(10):1897-1902. PubMed ID: 27574966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing cognitive load attenuates right arm swing in healthy human walking.
    Killeen T; Easthope CS; Filli L; Lőrincz L; Schrafl-Altermatt M; Brugger P; Linnebank M; Curt A; Zörner B; Bolliger M
    R Soc Open Sci; 2017 Jan; 4(1):160993. PubMed ID: 28280596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arm swing asymmetry in overground walking.
    Killeen T; Elshehabi M; Filli L; Hobert MA; Hansen C; Rieger D; Brockmann K; Nussbaum S; Zörner B; Bolliger M; Curt A; Berg D; Maetzler W
    Sci Rep; 2018 Aug; 8(1):12803. PubMed ID: 30143717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Device use, locomotor training and the presence of arm swing during treadmill walking after spinal cord injury.
    Tester NJ; Howland DR; Day KV; Suter SP; Cantrell A; Behrman AL
    Spinal Cord; 2011 Mar; 49(3):451-6. PubMed ID: 20938449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking.
    Mirelman A; Bernad-Elazari H; Nobel T; Thaler A; Peruzzi A; Plotnik M; Giladi N; Hausdorff JM
    PLoS One; 2015; 10(8):e0136043. PubMed ID: 26305896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromechanical considerations for incorporating rhythmic arm movement in the rehabilitation of walking.
    Klimstra MD; Thomas E; Stoloff RH; Ferris DP; Zehr EP
    Chaos; 2009 Jun; 19(2):026102. PubMed ID: 19566262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of task symmetry on bimanual reach-to-grasp movements after cervical spinal cord injury.
    Britten L; Coats RO; Ichiyama RM; Raza W; Jamil F; Astill SL
    Exp Brain Res; 2018 Nov; 236(11):3101-3111. PubMed ID: 30132041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dual- and complex-task on walking ability of ambulatory individuals with spinal cord injury.
    Srisim K; Thaweewannakij T; Arrayawichanon P; Amatachaya P; Mato L; Amatachaya S
    Eur J Phys Rehabil Med; 2017 Dec; 53(6):920-927. PubMed ID: 28497928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arm sway holds sway: locomotor-like modulation of leg reflexes when arms swing in alternation.
    Massaad F; Levin O; Meyns P; Drijkoningen D; Swinnen SP; Duysens J
    Neuroscience; 2014 Jan; 258():34-46. PubMed ID: 24144625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of arm swing amplitude and lower-limb asymmetry on gait stability.
    Hill A; Nantel J
    PLoS One; 2019; 14(12):e0218644. PubMed ID: 31860669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size of kinematic error affects retention of locomotor adaptation in human spinal cord injury.
    Yen SC; Landry JM; Wu M
    J Rehabil Res Dev; 2013; 50(9):1187-200. PubMed ID: 24458960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans.
    Kawashima N; Nozaki D; Abe MO; Nakazawa K
    J Neurophysiol; 2008 Jun; 99(6):2946-55. PubMed ID: 18450579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arm and leg coordination during treadmill walking in individuals with motor incomplete spinal cord injury: a preliminary study.
    Tester NJ; Barbeau H; Howland DR; Cantrell A; Behrman AL
    Gait Posture; 2012 May; 36(1):49-55. PubMed ID: 22341058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can the acute magnetic resonance imaging features reflect neurologic prognosis in patients with cervical spinal cord injury?
    Matsushita A; Maeda T; Mori E; Yuge I; Kawano O; Ueta T; Shiba K
    Spine J; 2017 Sep; 17(9):1319-1324. PubMed ID: 28501580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Utility of Interappendicular Connections in Bipedal Locomotion.
    McMillan D; de Leon R; Guertin PA; Dy C
    Curr Pharm Des; 2017; 23(12):1734-1740. PubMed ID: 27981907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons.
    Kawashima N; Nozaki D; Abe MO; Akai M; Nakazawa K
    J Neurophysiol; 2005 Feb; 93(2):777-85. PubMed ID: 15385590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements.
    Ramadan R; Geyer H; Jeka J; Schöner G; Reimann H
    Sci Rep; 2022 May; 12(1):8189. PubMed ID: 35581211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury.
    Dobkin BH; Harkema S; Requejo P; Edgerton VR
    J Neurol Rehabil; 1995; 9(4):183-90. PubMed ID: 11539274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.