These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27574966)

  • 41. Gait adaptation during walking on an inclined pathway following spinal cord injury.
    Desrosiers E; Duclos C; Nadeau S
    Clin Biomech (Bristol, Avon); 2014 May; 29(5):500-5. PubMed ID: 24805009
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of spinal cord contusion and transection: functional and histological changes in the rat urinary bladder.
    Breyer BN; Fandel TM; Alwaal A; Osterberg EC; Shindel AW; Lin G; Tanagho EA; Lue TF
    BJU Int; 2017 Feb; 119(2):333-341. PubMed ID: 27431329
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Arm Posture Score for assessing arm swing during gait: an evaluation of adding rotational components and the effect of different gait speeds.
    Frykberg GE; Johansson GM; Schelin L; Häger CK
    Gait Posture; 2014; 40(1):64-9. PubMed ID: 24647039
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA; Gorassini MA
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Swing phase resistance enhances flexor muscle activity during treadmill locomotion in incomplete spinal cord injury.
    Lam T; Wirz M; Lünenburger L; Dietz V
    Neurorehabil Neural Repair; 2008; 22(5):438-46. PubMed ID: 18780879
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of arm swing strategy on local dynamic stability of human gait.
    Punt M; Bruijn SM; Wittink H; van Dieën JH
    Gait Posture; 2015 Feb; 41(2):504-9. PubMed ID: 25582804
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation of locomotor activity in complete spinal cord injury.
    Lünenburger L; Bolliger M; Czell D; Müller R; Dietz V
    Exp Brain Res; 2006 Oct; 174(4):638-46. PubMed ID: 16761140
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Incomplete spinal cord injury promotes durable functional changes within the spinal locomotor circuitry.
    Martinez M; Delivet-Mongrain H; Leblond H; Rossignol S
    J Neurophysiol; 2012 Jul; 108(1):124-34. PubMed ID: 22490556
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploring How the Arms Can Help the Legs in Facilitating Gait Rehabilitation.
    Arellano CJ; Vega D
    Adv Biol (Weinh); 2024 Jun; 8(6):e2300661. PubMed ID: 38519429
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dose-Response Outcomes Associated with Different Forms of Locomotor Training in Persons with Chronic Motor-Incomplete Spinal Cord Injury.
    Sandler EB; Roach KE; Field-Fote EC
    J Neurotrauma; 2017 May; 34(10):1903-1908. PubMed ID: 27901413
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Locomotor adaptations and aftereffects to resistance during walking in individuals with spinal cord injury.
    Houldin A; Luttin K; Lam T
    J Neurophysiol; 2011 Jul; 106(1):247-58. PubMed ID: 21543755
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Treadmill walking in incomplete spinal-cord-injured subjects: 2. Factors limiting the maximal speed.
    Pépin A; Ladouceur M; Barbeau H
    Spinal Cord; 2003 May; 41(5):271-9. PubMed ID: 12714989
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rehabilitation of locomotion after spinal cord injury.
    van Hedel HJ; Dietz V
    Restor Neurol Neurosci; 2010; 28(1):123-34. PubMed ID: 20086289
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study.
    Wu M; Landry JM; Schmit BD; Hornby TG; Yen SC
    Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Possible contributions of CPG activity to the control of rhythmic human arm movement.
    Zehr EP; Carroll TJ; Chua R; Collins DF; Frigon A; Haridas C; Hundza SR; Thompson AK
    Can J Physiol Pharmacol; 2004; 82(8-9):556-68. PubMed ID: 15523513
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reduction of common synaptic drive to ankle dorsiflexor motoneurons during walking in patients with spinal cord lesion.
    Hansen NL; Conway BA; Halliday DM; Hansen S; Pyndt HS; Biering-Sørensen F; Nielsen JB
    J Neurophysiol; 2005 Aug; 94(2):934-42. PubMed ID: 15800077
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dopaminergic modulation of arm swing during gait among Parkinson's disease patients.
    Sterling NW; Cusumano JP; Shaham N; Piazza SJ; Liu G; Kong L; Du G; Lewis MM; Huang X
    J Parkinsons Dis; 2015; 5(1):141-50. PubMed ID: 25502948
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active and passive contributions to arm swing: Implications of the restriction of pelvis motion during human locomotion.
    Canton S; MacLellan MJ
    Hum Mov Sci; 2018 Feb; 57():314-323. PubMed ID: 28958710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.