These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27574966)

  • 61. Active and passive contributions to arm swing: Implications of the restriction of pelvis motion during human locomotion.
    Canton S; MacLellan MJ
    Hum Mov Sci; 2018 Feb; 57():314-323. PubMed ID: 28958710
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Facilitation of soleus H-reflex amplitude evoked by cutaneous nerve stimulation at the wrist is not suppressed by rhythmic arm movement.
    Zehr EP; Frigon A; Hoogenboom N; Collins DF
    Exp Brain Res; 2004 Dec; 159(3):382-8. PubMed ID: 15480593
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Objective Arm Swing Analysis in Early-Stage Parkinson's Disease Using an RGB-D Camera (Kinect®).
    Ospina BM; Chaparro JAV; Paredes JDA; Pino YJC; Navarro A; Orozco JL
    J Parkinsons Dis; 2018; 8(4):563-570. PubMed ID: 30149466
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Locomotor training after human spinal cord injury: a series of case studies.
    Behrman AL; Harkema SJ
    Phys Ther; 2000 Jul; 80(7):688-700. PubMed ID: 10869131
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking.
    Kubo M; Wagenaar RC; Saltzman E; Holt KG
    Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study.
    Lam T; Pauhl K; Ferguson A; Malik RN; ; Krassioukov A; Eng JJ
    J Rehabil Res Dev; 2015; 52(1):113-29. PubMed ID: 26230667
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI.
    Dobkin B; Apple D; Barbeau H; Basso M; Behrman A; Deforge D; Ditunno J; Dudley G; Elashoff R; Fugate L; Harkema S; Saulino M; Scott M;
    Neurology; 2006 Feb; 66(4):484-93. PubMed ID: 16505299
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Walking in water and on land after an incomplete spinal cord injury.
    Tamburella F; Scivoletto G; Cosentino E; Molinari M
    Am J Phys Med Rehabil; 2013 Oct; 92(10 Suppl 2):e4-15. PubMed ID: 24052028
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Coordination between arm and leg movements during locomotion.
    Donker SF; Beek PJ; Wagenaar RC; Mulder T
    J Mot Behav; 2001 Mar; 33(1):86-102. PubMed ID: 11303522
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Locomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury.
    Smith AC; Mummidisetty CK; Rymer WZ; Knikou M
    J Neurophysiol; 2014 Nov; 112(9):2164-75. PubMed ID: 25122715
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Increased Brain Sensorimotor Network Activation after Incomplete Spinal Cord Injury.
    Sharp KG; Gramer R; Page SJ; Cramer SC
    J Neurotrauma; 2017 Feb; 34(3):623-631. PubMed ID: 27528274
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanical energy patterns in nordic walking: comparisons with conventional walking.
    Pellegrini B; Peyré-Tartaruga LA; Zoppirolli C; Bortolan L; Savoldelli A; Minetti AE; Schena F
    Gait Posture; 2017 Jan; 51():234-238. PubMed ID: 27825073
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dynamic feet distance: A new functional assessment during treadmill locomotion in normal and thoracic spinal cord injured rats.
    Diogo CC; Costa LMD; Pereira JE; Filipe V; Couto PA; Magalhães LG; Geuna S; Armada-da-Silva PA; Maurício AC; Varejão AS
    Behav Brain Res; 2017 Sep; 335():132-135. PubMed ID: 28803852
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Altered corticospinal function during movement preparation in humans with spinal cord injury.
    Federico P; Perez MA
    J Physiol; 2017 Jan; 595(1):233-245. PubMed ID: 27485306
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Tendon reflexes for predicting movement recovery after acute spinal cord injury in humans.
    Calancie B; Molano MR; Broton JG
    Clin Neurophysiol; 2004 Oct; 115(10):2350-63. PubMed ID: 15351378
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals.
    Minassian K; Hofstoetter US; Danner SM; Mayr W; Bruce JA; McKay WB; Tansey KE
    Neurorehabil Neural Repair; 2016 Mar; 30(3):233-43. PubMed ID: 26089308
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Arm swing during walking at different speeds in children with Cerebral Palsy and typically developing children.
    Meyns P; Van Gestel L; Massaad F; Desloovere K; Molenaers G; Duysens J
    Res Dev Disabil; 2011; 32(5):1957-64. PubMed ID: 21531534
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury.
    Zhou R; Alvarado L; Kim S; Chong SL; Mushahwar VK
    J Neurophysiol; 2017 Oct; 118(4):2507-2519. PubMed ID: 28701544
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Using robot-applied resistance to augment body-weight-supported treadmill training in an individual with incomplete spinal cord injury.
    Lam T; Pauhl K; Krassioukov A; Eng JJ
    Phys Ther; 2011 Jan; 91(1):143-51. PubMed ID: 21127165
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of active arm swing to local dynamic stability during walking.
    Wu Y; Li Y; Liu AM; Xiao F; Wang YZ; Hu F; Chen JL; Dai KR; Gu DY
    Hum Mov Sci; 2016 Feb; 45():102-9. PubMed ID: 26615477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.