These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27575093)

  • 1. Optimal performance of heat engines with a finite source or sink and inequalities between means.
    Johal RS
    Phys Rev E; 2016 Jul; 94(1-1):012123. PubMed ID: 27575093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source.
    Izumida Y; Okuda K
    Phys Rev Lett; 2014 May; 112(18):180603. PubMed ID: 24856684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles.
    Frim AG; DeWeese MR
    Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-size effect on optimal efficiency of heat engines.
    Tajima H; Hayashi M
    Phys Rev E; 2017 Jul; 96(1-1):012128. PubMed ID: 29347128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal performance of periodically driven, stochastic heat engines under limited control.
    Bauer M; Brandner K; Seifert U
    Phys Rev E; 2016 Apr; 93():042112. PubMed ID: 27176259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropy production and thermodynamic power of the squeezed thermal reservoir.
    Manzano G; Galve F; Zambrini R; Parrondo JM
    Phys Rev E; 2016 May; 93(5):052120. PubMed ID: 27300843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency.
    Gerstenmaier YC
    Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine.
    Ma YH
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization in finite-reservoir finite-time thermodynamics.
    Wang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062140. PubMed ID: 25615077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic model for the finite-time thermodynamics of small heat engines.
    Cerino L; Puglisi A; Vulpiani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032128. PubMed ID: 25871075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency at maximum power output of quantum heat engines under finite-time operation.
    Wang J; He J; Wu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting work from a single thermal bath via quantum negentropy.
    Scully MO
    Phys Rev Lett; 2001 Nov; 87(22):220601. PubMed ID: 11736390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power.
    Long R; Liu W
    Phys Rev E; 2016 Nov; 94(5-1):052114. PubMed ID: 27967103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-Time Thermodynamic Model for Evaluating Heat Engines in Ocean Thermal Energy Conversion.
    Yasunaga T; Ikegami Y
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal Cycles for Low-Dissipation Heat Engines.
    Abiuso P; Perarnau-Llobet M
    Phys Rev Lett; 2020 Mar; 124(11):110606. PubMed ID: 32242675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Work and power fluctuations in a critical heat engine.
    Holubec V; Ryabov A
    Phys Rev E; 2017 Sep; 96(3-1):030102. PubMed ID: 29347002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal heat engines: a review.
    Martínez IA; Roldán É; Dinis L; Rica RA
    Soft Matter; 2016 Dec; 13(1):22-36. PubMed ID: 27477856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031116. PubMed ID: 22587047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithmic quantum heat engines.
    Köse E; Çakmak S; Gençten A; Kominis IK; Müstecaplıoğlu ÖE
    Phys Rev E; 2019 Jul; 100(1-1):012109. PubMed ID: 31499932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tight Second Law inequality for coherent quantum systems and finite-size heat baths.
    Łobejko M
    Nat Commun; 2021 Feb; 12(1):918. PubMed ID: 33568672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.