These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27575103)

  • 1. Perturbative expansion for the maximum of fractional Brownian motion.
    Delorme M; Wiese KJ
    Phys Rev E; 2016 Jul; 94(1-1):012134. PubMed ID: 27575103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum of a Fractional Brownian Motion: Analytic Results from Perturbation Theory.
    Delorme M; Wiese KJ
    Phys Rev Lett; 2015 Nov; 115(21):210601. PubMed ID: 26636835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extreme-value statistics of fractional Brownian motion bridges.
    Delorme M; Wiese KJ
    Phys Rev E; 2016 Nov; 94(5-1):052105. PubMed ID: 27967044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Arcsine Laws for Fractional Brownian Motion.
    Sadhu T; Delorme M; Wiese KJ
    Phys Rev Lett; 2018 Jan; 120(4):040603. PubMed ID: 29437446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionals of fractional Brownian motion and the three arcsine laws.
    Sadhu T; Wiese KJ
    Phys Rev E; 2021 Nov; 104(5-1):054112. PubMed ID: 34942782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme events for fractional Brownian motion with drift: Theory and numerical validation.
    Arutkin M; Walter B; Wiese KJ
    Phys Rev E; 2020 Aug; 102(2-1):022102. PubMed ID: 32942469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longest excursion of fractional Brownian motion: numerical evidence of non-Markovian effects.
    García-García R; Rosso A; Schehr G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010102. PubMed ID: 20365309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First passage in an interval for fractional Brownian motion.
    Wiese KJ
    Phys Rev E; 2019 Mar; 99(3-1):032106. PubMed ID: 30999514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbation theory for fractional Brownian motion in presence of absorbing boundaries.
    Wiese KJ; Majumdar SN; Rosso A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061141. PubMed ID: 21797336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion.
    Makarava N; Menz S; Theves M; Huisinga W; Beta C; Holschneider M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042703. PubMed ID: 25375519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional non-Brownian motion and trapping-time distributions of grains in rice piles.
    Hopcraft KI; Tanner RM; Jakeman E; Graves JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026121. PubMed ID: 11497665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling Exponents of Time Series Data: A Machine Learning Approach.
    Raubitzek S; Corpaci L; Hofer R; Mallinger K
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights.
    Ai BQ; Shao ZG; Zhong WR
    J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memory effects in fractional Brownian motion with Hurst exponent H<1/3.
    Bologna M; Vanni F; Krokhin A; Grigolini P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):020102. PubMed ID: 20866763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival probability of stochastic processes beyond persistence exponents.
    Levernier N; Dolgushev M; Bénichou O; Voituriez R; Guérin T
    Nat Commun; 2019 Jul; 10(1):2990. PubMed ID: 31278270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics.
    Grzesiek A; Gajda J; Thapa S; Wyłomańska A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38668586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occupation time statistics of the fractional Brownian motion in a finite domain.
    Kimura M; Akimoto T
    Phys Rev E; 2022 Dec; 106(6-1):064132. PubMed ID: 36671174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact enumeration approach to first-passage time distribution of non-Markov random walks.
    Baghram S; Nikakhtar F; Tabar MRR; Rahvar S; Sheth RK; Lehnertz K; Sahimi M
    Phys Rev E; 2019 Jun; 99(6-1):062101. PubMed ID: 31330686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.