These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27575126)

  • 1. Dynamical playground of a higher-order cubic Ginzburg-Landau equation: From orbital connections and limit cycles to invariant tori and the onset of chaos.
    Achilleos V; Bishop AR; Diamantidis S; Frantzeskakis DJ; Horikis TP; Karachalios NI; Kevrekidis PG
    Phys Rev E; 2016 Jul; 94(1-1):012210. PubMed ID: 27575126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Invariant tori in dissipative hyperchaos.
    Parker JP; Schneider TM
    Chaos; 2022 Nov; 32(11):113102. PubMed ID: 36456339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Existence and stability of solutions of the cubic complex Ginzburg-Landau equation with delayed Raman scattering.
    Facão M; Carvalho MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022922. PubMed ID: 26382490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation under the influence of nonlinear gain and higher-order effects.
    Uzunov IM; Georgiev ZD; Arabadzhiev TN
    Phys Rev E; 2018 May; 97(5-1):052215. PubMed ID: 29906910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable vortex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation.
    Mihalache D; Mazilu D; Lederer F; Kartashov YV; Crasovan LC; Torner L; Malomed BA
    Phys Rev Lett; 2006 Aug; 97(7):073904. PubMed ID: 17026230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaotic behavior in transverse-mode laser dynamics.
    Kaige W; Abraham NB; Albano AM
    Chaos; 1993 Jul; 3(3):287-294. PubMed ID: 12780037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of time-dependence for dissipative solitons stabilized by nonlinear gradient terms: Periodic and quasiperiodic vs chaotic behavior.
    Descalzi O; Facão M; Cartes C; Carvalho MI; Brand HR
    Chaos; 2023 Aug; 33(8):. PubMed ID: 38060792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.
    Ballard CC; Esty CC; Egolf DA
    Chaos; 2016 Nov; 26(11):113101. PubMed ID: 27908021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting chaotic statistics with unstable invariant tori.
    Parker JP; Ashtari O; Schneider TM
    Chaos; 2023 Aug; 33(8):. PubMed ID: 37535021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hole-defect chaos in the one-dimensional complex Ginzburg-Landau equation.
    Howard M; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026213. PubMed ID: 14525090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation.
    Tsoy EN; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036621. PubMed ID: 16605691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition from non-periodic to periodic explosions.
    Cartes C; Descalzi O
    Philos Trans A Math Phys Eng Sci; 2015 Dec; 373(2056):. PubMed ID: 26527807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation.
    Kalashnikov VL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046606. PubMed ID: 19905470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging fixed-shape solutions from a pulsating chaotic soliton.
    Latas SC; Ferreira MF
    Opt Lett; 2012 Sep; 37(18):3897-9. PubMed ID: 23041896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms.
    Tian H; Li Z; Tian J; Zhou G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066204. PubMed ID: 12513381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling Mackey-Glass chaos.
    Kiss G; Röst G
    Chaos; 2017 Nov; 27(11):114321. PubMed ID: 29195319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ordered and self-disordered dynamics of holes and defects in the one-dimensional complex Ginzburg-Landau equation.
    van Hecke M; Howard M
    Phys Rev Lett; 2001 Mar; 86(10):2018-21. PubMed ID: 11289844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of pulse trains in nonlinear optical fibers through the generalized complex Ginzburg-Landau equation.
    Latchio Tiofack CG; Mohamadou A; Kofané TC; Moubissi AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066604. PubMed ID: 20365291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation.
    Madruga S; Riecke H; Pesch W
    Phys Rev Lett; 2006 Feb; 96(7):074501. PubMed ID: 16606097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasiperiodic and chaotic discrete breathers in a parametrically driven system without linear dispersion.
    Maniadis P; Bountis T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046211. PubMed ID: 16711921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.