These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 27575152)
21. Amplitude chimera and chimera death induced by external agents in two-layer networks. Verma UK; Ambika G Chaos; 2020 Apr; 30(4):043104. PubMed ID: 32357668 [TBL] [Abstract][Full Text] [Related]
22. Chaotic chimera attractors in a triangular network of identical oscillators. Lee S; Krischer K Phys Rev E; 2023 May; 107(5-1):054205. PubMed ID: 37328989 [TBL] [Abstract][Full Text] [Related]
23. Stable and transient multicluster oscillation death in nonlocally coupled networks. Schneider I; Kapeller M; Loos S; Zakharova A; Fiedler B; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052915. PubMed ID: 26651770 [TBL] [Abstract][Full Text] [Related]
24. Networks of coupled oscillators: From phase to amplitude chimeras. Banerjee T; Biswas D; Ghosh D; Schöll E; Zakharova A Chaos; 2018 Nov; 28(11):113124. PubMed ID: 30501215 [TBL] [Abstract][Full Text] [Related]
25. Chimeras and complex cluster states in arrays of spin-torque oscillators. Zaks M; Pikovsky A Sci Rep; 2017 Jul; 7(1):4648. PubMed ID: 28680160 [TBL] [Abstract][Full Text] [Related]
26. Cluster singularity: The unfolding of clustering behavior in globally coupled Stuart-Landau oscillators. Kemeth FP; Haugland SW; Krischer K Chaos; 2019 Feb; 29(2):023107. PubMed ID: 30823729 [TBL] [Abstract][Full Text] [Related]
27. Spiral wave chimeras in nonlocally coupled bicomponent oscillators. Li Y; Li H; Chen Y; Gao S; Dai Q; Yang J Phys Rev E; 2023 Dec; 108(6-1):064206. PubMed ID: 38243460 [TBL] [Abstract][Full Text] [Related]
28. Emerging chimera states under nonidentical counter-rotating oscillators. Sathiyadevi K; Chandrasekar VK; Lakshmanan M Phys Rev E; 2022 Mar; 105(3-1):034211. PubMed ID: 35428132 [TBL] [Abstract][Full Text] [Related]
29. Fading of remote synchronization in tree networks of Stuart-Landau oscillators. Karakaya B; Minati L; Gambuzza LV; Frasca M Phys Rev E; 2019 May; 99(5-1):052301. PubMed ID: 31212500 [TBL] [Abstract][Full Text] [Related]
30. Generalized synchronization between chimera states. Andrzejak RG; Ruzzene G; Malvestio I Chaos; 2017 May; 27(5):053114. PubMed ID: 28576111 [TBL] [Abstract][Full Text] [Related]
31. Chimera states in two populations with heterogeneous phase-lag. Martens EA; Bick C; Panaggio MJ Chaos; 2016 Sep; 26(9):094819. PubMed ID: 27781471 [TBL] [Abstract][Full Text] [Related]
32. Two mechanisms of remote synchronization in a chain of Stuart-Landau oscillators. Kumar M; Rosenblum M Phys Rev E; 2021 Nov; 104(5-1):054202. PubMed ID: 34942824 [TBL] [Abstract][Full Text] [Related]
34. Instability of synchronized motion in nonlocally coupled neural oscillators. Sakaguchi H Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031907. PubMed ID: 16605558 [TBL] [Abstract][Full Text] [Related]
35. Aging transition in mixed active and inactive fractional-order oscillators. Sun Z; Liu Y; Liu K; Yang X; Xu W Chaos; 2019 Oct; 29(10):103150. PubMed ID: 31675845 [TBL] [Abstract][Full Text] [Related]
36. Chimera states: the existence criteria revisited. Sethia GC; Sen A Phys Rev Lett; 2014 Apr; 112(14):144101. PubMed ID: 24765967 [TBL] [Abstract][Full Text] [Related]
37. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states. Lee WS; Ott E; Antonsen TM Chaos; 2013 Sep; 23(3):033116. PubMed ID: 24089952 [TBL] [Abstract][Full Text] [Related]
38. Chimera patterns in three-dimensional locally coupled systems. Kundu S; Bera BK; Ghosh D; Lakshmanan M Phys Rev E; 2019 Feb; 99(2-1):022204. PubMed ID: 30934225 [TBL] [Abstract][Full Text] [Related]
39. Controlling chimera states in chaotic oscillator ensembles through linear augmentation. Khatun AA; Jafri HH; Punetha N Phys Rev E; 2021 Apr; 103(4-1):042202. PubMed ID: 34005985 [TBL] [Abstract][Full Text] [Related]
40. Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions. Dixit S; Nag Chowdhury S; Prasad A; Ghosh D; Shrimali MD Chaos; 2021 Jan; 31(1):011105. PubMed ID: 33754786 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]