These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27575164)

  • 21. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-Term Activity Dynamics of Single Neurons and Networks.
    Reinartz S
    Adv Neurobiol; 2019; 22():331-350. PubMed ID: 31073943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of glial release and somatic receptors on bursting in synchronized neuronal networks.
    Zhan X; Lai PY; Chan CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011907. PubMed ID: 21867213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homeostatic presynaptic suppression of neuronal network bursts.
    Cohen D; Segal M
    J Neurophysiol; 2009 Apr; 101(4):2077-88. PubMed ID: 19193770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.
    Lonardoni D; Amin H; Di Marco S; Maccione A; Berdondini L; Nieus T
    PLoS Comput Biol; 2017 Jul; 13(7):e1005672. PubMed ID: 28749937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity.
    Takahashi YK; Kori H; Masuda N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051904. PubMed ID: 19518477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stochastic modeling of spontaneous bursting activity to simulate neural responses of in-vitro networks on multielectrode arrays.
    Valenza G; Vannucci G; Wanke E; Scilingo EP
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1616-1619. PubMed ID: 28268638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth of cortical neuronal network in vitro: modeling and analysis.
    Lai PY; Jia LC; Chan CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051906. PubMed ID: 16802966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coding of temporally varying signals in networks of spiking neurons with global delayed feedback.
    Masuda N; Doiron B; Longtin A; Aihara K
    Neural Comput; 2005 Oct; 17(10):2139-75. PubMed ID: 16105221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational study of synchrony in fields and microclusters of ephaptically coupled neurons.
    Stacey RG; Hilbert L; Quail T
    J Neurophysiol; 2015 May; 113(9):3229-41. PubMed ID: 25673735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
    Li X; Small M
    Chaos; 2012 Jun; 22(2):023104. PubMed ID: 22757511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical coupling can prevent expression of adult-like properties in an embryonic neural circuit.
    Bem T; Le Feuvre Y; Simmers J; Meyrand P
    J Neurophysiol; 2002 Jan; 87(1):538-47. PubMed ID: 11784769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emergent epileptiform activity in neural networks with weak excitatory synapses.
    van Drongelen W; Lee HC; Hereld M; Chen Z; Elsen FP; Stevens RL
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):236-41. PubMed ID: 16003905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patterns of spontaneous activity in unstructured and minimally structured spinal networks in culture.
    Yvon C; Rubli R; Streit J
    Exp Brain Res; 2005 Aug; 165(2):139-51. PubMed ID: 15940497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Key role of voltage-dependent properties of synaptic currents in robust network synchronization.
    Wang Z; Wong WK
    Neural Netw; 2013 Jul; 43():55-62. PubMed ID: 23500500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase synchronization of bursting neurons in clustered small-world networks.
    Batista CA; Lameu EL; Batista AM; Lopes SR; Pereira T; Zamora-López G; Kurths J; Viana RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016211. PubMed ID: 23005511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal integration by stochastic recurrent network dynamics with bimodal neurons.
    Okamoto H; Isomura Y; Takada M; Fukai T
    J Neurophysiol; 2007 Jun; 97(6):3859-67. PubMed ID: 17392417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental analysis and computational modeling of interburst intervals in spontaneous activity of cortical neuronal culture.
    Gritsun T; le Feber J; Stegenga J; Rutten WL
    Biol Cybern; 2011 Oct; 105(3-4):197-210. PubMed ID: 22030696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.