These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27575206)

  • 1. Liquid morphologies and capillary forces between three spherical beads.
    Semprebon C; Scheel M; Herminghaus S; Seemann R; Brinkmann M
    Phys Rev E; 2016 Jul; 94(1-1):012907. PubMed ID: 27575206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System.
    Wang S; Wang JP; Ge S; Li X; Dadda A
    Langmuir; 2024 Jun; 40(24):12744-12754. PubMed ID: 38838080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pendular, Funicular, and Capillary Bridges: Results for Two Dimensions.
    Urso ME; Lawrence CJ; Adams MJ
    J Colloid Interface Sci; 1999 Dec; 220(1):42-56. PubMed ID: 10550239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting of a liquid annulus in a capillary tube.
    Lv C; Hardt S
    Soft Matter; 2021 Feb; 17(7):1756-1772. PubMed ID: 33393559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear strength of wet granular materials: Macroscopic cohesion and effective stress : Discrete numerical simulations, confronted to experimental measurements.
    Badetti M; Fall A; Chevoir F; Roux JN
    Eur Phys J E Soft Matter; 2018 May; 41(5):68. PubMed ID: 29802504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.
    Danov KD; Georgiev MT; Kralchevsky PA; Radulova GM; Gurkov TD; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2018 Jan; 251():80-96. PubMed ID: 29174116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rupture energy and wetting behavior of pendular liquid bridges in relation to the spherical agglomeration process.
    Rossetti D; Pepin X; Simons SJ
    J Colloid Interface Sci; 2003 May; 261(1):161-9. PubMed ID: 12725836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction.
    Domenech T; Velankar SS
    Soft Matter; 2015 Feb; 11(8):1500-16. PubMed ID: 25582822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary-force-induced clustering of micropillar arrays: is it caused by isolated capillary bridges or by the lateral capillary meniscus interaction force?
    Chandra D; Yang S
    Langmuir; 2009 Sep; 25(18):10430-4. PubMed ID: 19735125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric capillary bridges between contacting spheres.
    Farmer TP; Bird JC
    J Colloid Interface Sci; 2015 Sep; 454():192-9. PubMed ID: 26037268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the Evolution and Rupture of Pendular Liquid Bridges in the Presence of Large Wetting Hysteresis.
    Pepin X; Rossetti D; Iveson SM; Simons SJ
    J Colloid Interface Sci; 2000 Dec; 232(2):289-297. PubMed ID: 11097763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow of wet granular materials: A numerical study.
    Khamseh S; Roux JN; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022201. PubMed ID: 26382388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles.
    Sun X; Sakai M
    Phys Rev E; 2016 Dec; 94(6-1):063301. PubMed ID: 28085306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Pendular Liquid Bridges with a Reducing Solid-Liquid Interface.
    Pepin X; Rossetti D; Simons SJ
    J Colloid Interface Sci; 2000 Dec; 232(2):298-302. PubMed ID: 11097764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous and discontinuous transitions between two types of capillary bridges on a beaded chain pulled out from a liquid.
    Dutka F; Rozynek Z; Napiórkowski M
    Soft Matter; 2017 Jul; 13(27):4698-4708. PubMed ID: 28628171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting phase connectivity and irreducible saturation in simple granular media.
    Bryant S; Johnson A
    J Colloid Interface Sci; 2003 Jul; 263(2):572-9. PubMed ID: 12909050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hysteresis in spreading and retraction of liquid droplets on parallel fiber rails.
    Wang F; Schiller UD
    Soft Matter; 2021 Jun; 17(22):5486-5498. PubMed ID: 33982038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rupture work of pendular bridges.
    de Boer PC; de Boer MP
    Langmuir; 2008 Jan; 24(1):160-9. PubMed ID: 18041851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting morphologies on an array of fibers of different radii.
    Sauret A; Boulogne F; Cébron D; Dressaire E; Stone HA
    Soft Matter; 2015 May; 11(20):4034-40. PubMed ID: 25899307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-anisotropic particles at curved fluid interfaces and role of Laplace pressure: a computational study.
    Cheng TL; Wang YU
    J Colloid Interface Sci; 2013 Jul; 402():267-78. PubMed ID: 23628204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.