These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 27575210)
1. Mesoscopic formulas of linear and angular momentum fluxes. Fruleux A; Sekimoto K Phys Rev E; 2016 Jul; 94(1-1):013004. PubMed ID: 27575210 [TBL] [Abstract][Full Text] [Related]
2. Statistical mechanics of transport processes in active fluids: Equations of hydrodynamics. Klymko K; Mandal D; Mandadapu KK J Chem Phys; 2017 Nov; 147(19):194109. PubMed ID: 29166113 [TBL] [Abstract][Full Text] [Related]
3. Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics. Español P; Donev A J Chem Phys; 2015 Dec; 143(23):234104. PubMed ID: 26696043 [TBL] [Abstract][Full Text] [Related]
4. A generalized Irving-Kirkwood formula for the calculation of stress in molecular dynamics models. Yang JZ; Wu X; Li X J Chem Phys; 2012 Oct; 137(13):134104. PubMed ID: 23039582 [TBL] [Abstract][Full Text] [Related]
5. Constructing many-body dissipative particle dynamics models of fluids from bottom-up coarse-graining. Han Y; Jin J; Voth GA J Chem Phys; 2021 Feb; 154(8):084122. PubMed ID: 33639745 [TBL] [Abstract][Full Text] [Related]
6. Foundations of dissipative particle dynamics. Flekkoy EG; Coveney PV; De Fabritiis G Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):2140-57. PubMed ID: 11088680 [TBL] [Abstract][Full Text] [Related]
7. Stress and heat flux for arbitrary multibody potentials: a unified framework. Admal NC; Tadmor EB J Chem Phys; 2011 May; 134(18):184106. PubMed ID: 21568496 [TBL] [Abstract][Full Text] [Related]
8. Statistical mechanics of transport processes in active fluids. II. Equations of hydrodynamics for active Brownian particles. Epstein JM; Klymko K; Mandadapu KK J Chem Phys; 2019 Apr; 150(16):164111. PubMed ID: 31042887 [TBL] [Abstract][Full Text] [Related]
9. Coarse-graining errors and numerical optimization using a relative entropy framework. Chaimovich A; Shell MS J Chem Phys; 2011 Mar; 134(9):094112. PubMed ID: 21384955 [TBL] [Abstract][Full Text] [Related]
10. Polarization as a field variable from molecular dynamics simulations. Mandadapu KK; Templeton JA; Lee JW J Chem Phys; 2013 Aug; 139(5):054115. PubMed ID: 23927251 [TBL] [Abstract][Full Text] [Related]
11. Integral equation theory based direct and accelerated systematic coarse-graining approaches. Mashayak SY; Miao L; Aluru NR J Chem Phys; 2018 Jun; 148(21):214105. PubMed ID: 29884051 [TBL] [Abstract][Full Text] [Related]
12. Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems. Katsoulakis MA; Plechác P J Chem Phys; 2013 Aug; 139(7):074115. PubMed ID: 23968080 [TBL] [Abstract][Full Text] [Related]
13. Forces and torques on rigid inclusions in an elastic environment: Resulting matrix-mediated interactions, displacements, and rotations. Puljiz M; Menzel AM Phys Rev E; 2017 May; 95(5-1):053002. PubMed ID: 28618505 [TBL] [Abstract][Full Text] [Related]
14. Microscopic field theory for structure formation in systems of self-propelled particles with generic torques. Sesé-Sansa E; Levis D; Pagonabarraga I J Chem Phys; 2022 Dec; 157(22):224905. PubMed ID: 36546814 [TBL] [Abstract][Full Text] [Related]
15. A test of systematic coarse-graining of molecular dynamics simulations: Transport properties. Fu CC; Kulkarni PM; Shell MS; Leal LG J Chem Phys; 2013 Sep; 139(9):094107. PubMed ID: 24028102 [TBL] [Abstract][Full Text] [Related]
16. Coarse-graining microscopic strains in a harmonic, two-dimensional solid: elasticity, nonlocal susceptibilities, and nonaffine noise. Franzrahe K; Nielaba P; Sengupta S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016112. PubMed ID: 20866694 [TBL] [Abstract][Full Text] [Related]
17. Coarse graining of biochemical systems described by discrete stochastic dynamics. Seiferth D; Sollich P; Klumpp S Phys Rev E; 2020 Dec; 102(6-1):062149. PubMed ID: 33466014 [TBL] [Abstract][Full Text] [Related]
18. Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation. Li Z; Bian X; Caswell B; Karniadakis GE Soft Matter; 2014 Nov; 10(43):8659-72. PubMed ID: 25252001 [TBL] [Abstract][Full Text] [Related]
19. Microscopic theory of a Janus motor in a non-equilibrium fluid: Surface hydrodynamics and boundary conditions. Robertson B; Schofield J; Kapral R J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38165093 [TBL] [Abstract][Full Text] [Related]
20. Universal sequence of ordered structures obtained from mesoscopic description of self-assembly. Ciach A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061505. PubMed ID: 19256844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]