These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 27575216)

  • 1. Extreme conditions in a dissolving air nanobubble.
    Yasui K; Tuziuti T; Kanematsu W
    Phys Rev E; 2016 Jul; 94(1-1):013106. PubMed ID: 27575216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High temperature and pressure inside a dissolving oxygen nanobubble.
    Yasui K; Tuziuti T; Kanematsu W
    Ultrason Sonochem; 2019 Jul; 55():308-312. PubMed ID: 30686604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation.
    Yasui K; Tuziuti T; Kanematsu W
    Ultrason Sonochem; 2018 Nov; 48():259-266. PubMed ID: 30080549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Equilibrium Model for a Bulk Nanobubble and a Microbubble Partly Covered with Hydrophobic Material.
    Yasui K; Tuziuti T; Kanematsu W; Kato K
    Langmuir; 2016 Nov; 32(43):11101-11110. PubMed ID: 26972826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical and experimental study of dissociation in an air-water single-bubble sonoluminescence system.
    Puente GF; Urteaga R; Bonetto FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046305. PubMed ID: 16383531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions.
    Yasui K; Tuziuti T; Lee J; Kozuka T; Towata A; Iida Y
    J Chem Phys; 2008 May; 128(18):184705. PubMed ID: 18532834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a nanobubble and its effect on the structural ordering of water in a CH
    Kaur SP; Sujith KS; Ramachandran CN
    Phys Chem Chem Phys; 2018 Apr; 20(14):9157-9166. PubMed ID: 29560970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble evolution and properties in homogeneous nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063301. PubMed ID: 25615216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum bubble temperature for the sonochemical production of oxidants.
    Yasui K; Tuziuti T; Iida Y
    Ultrasonics; 2004 Apr; 42(1-9):579-84. PubMed ID: 15047350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric foaming with nanoscale nucleants: a surface nanobubble mechanism.
    Kumar DN; Roy A; Jha A; Sambasivan A; Harikrishnan G
    Chemphyschem; 2014 Dec; 15(18):4006-10. PubMed ID: 25319179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound.
    Yasui K; Tuziuti T; Kozuka T; Towata A; Iida Y
    J Chem Phys; 2007 Oct; 127(15):154502. PubMed ID: 17949168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced oscillation dynamics of surface nanobubbles.
    Dockar D; Gibelli L; Borg MK
    J Chem Phys; 2020 Nov; 153(18):184705. PubMed ID: 33187431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.
    Sujith KS; Ramachandran CN
    J Phys Chem B; 2017 Jan; 121(1):153-163. PubMed ID: 27935719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modelling approach to explore the optimum bubble size for micro-nanobubble aeration.
    Fan W; Li Y; Lyu T; Yu J; Chen Z; Jarvis P; Huo Y; Xiao D; Huo M
    Water Res; 2023 Jan; 228(Pt A):119360. PubMed ID: 36402060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption of in vivo inert gas bubbles.
    Hlastala MP; Van Liew HD
    Respir Physiol; 1975 Jul; 24(2):147-58. PubMed ID: 1179046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale molecular dynamics simulations of bubble collapse in water: Effects of system size, water model, and nitrogen.
    Chen JL; Prelesnik JL; Liang B; Sun Y; Bhatt M; Knight C; Mahesh K; Siepmann JI
    J Chem Phys; 2023 Dec; 159(22):. PubMed ID: 38095201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shock-induced collapse of surface nanobubbles.
    Dockar D; Gibelli L; Borg MK
    Soft Matter; 2021 Jul; 17(28):6884-6898. PubMed ID: 34231638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced dynamic-equilibrium model for a nanobubble and a micropancake on a hydrophobic or hydrophilic surface.
    Yasui K; Tuziuti T; Kanematsu W; Kato K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033008. PubMed ID: 25871203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraalveolar bubbles and bubble films: II. Formation in vivo through adulthood.
    Scarpelli EM; Mautone AJ; DeFouw DO; Clutario BC
    Anat Rec; 1996 Oct; 246(2):245-70. PubMed ID: 8888967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Soluble Surfactants and Deformation on the Dynamics of Centered Bubbles in Cylindrical Microchannels.
    Atasi O; Haut B; Pedrono A; Scheid B; Legendre D
    Langmuir; 2018 Aug; 34(34):10048-10062. PubMed ID: 30040422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.