BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27575386)

  • 1. Photocurrent Quantum Yield in Suspended Carbon Nanotube p-n Junctions.
    Aspitarte L; McCulley DR; Minot ED
    Nano Lett; 2016 Sep; 16(9):5589-93. PubMed ID: 27575386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extremely Efficient Photocurrent Generation in Carbon Nanotube Photodiodes Enabled by a Strong Axial Electric Field.
    McCulley DR; Senger MJ; Bertoni A; Perebeinos V; Minot ED
    Nano Lett; 2020 Jan; 20(1):433-440. PubMed ID: 31847521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric Engineering Boosts the Efficiency of Carbon Nanotube Photodiodes.
    Senger MJ; Kefayati A; Bertoni A; Perebeinos V; Minot ED
    ACS Nano; 2021 Jun; 15(6):10472-10479. PubMed ID: 34105938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors.
    Ahn YH; Tsen AW; Kim B; Park YW; Park J
    Nano Lett; 2007 Nov; 7(11):3320-3. PubMed ID: 17939725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes.
    Park J; Reid OG; Blackburn JL; Rumbles G
    Nat Commun; 2015 Nov; 6():8809. PubMed ID: 26531728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Conversion Efficiency Carbon Nanotube-Based Barrier-Free Bipolar-Diode Photodetector.
    Wang F; Wang S; Yao F; Xu H; Wei N; Liu K; Peng LM
    ACS Nano; 2016 Oct; 10(10):9595-9601. PubMed ID: 27632420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoresponse of a Single Y-Junction Carbon Nanotube.
    Samanta S; Saini D; Singha A; Das K; Bandaru PR; Rao AM; Raychaudhuri AK
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):19024-30. PubMed ID: 27379988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy.
    Barkelid M; Steele GA; Zwiller V
    Nano Lett; 2012 Nov; 12(11):5649-53. PubMed ID: 23066947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The photoresponse of spray-coated and free-standing carbon nanotube films with Schottky contacts.
    Merchant CA; Marković N
    Nanotechnology; 2009 Apr; 20(17):175202. PubMed ID: 19420586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton dissociation and stark effect in the carbon nanotube photocurrent spectrum.
    Mohite AD; Gopinath P; Shah HM; Alphenaar BW
    Nano Lett; 2008 Jan; 8(1):142-6. PubMed ID: 18047383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bias Tunable Photocurrent in Metal-Insulator-Semiconductor Heterostructures with Photoresponse Enhanced by Carbon Nanotubes.
    Di Bartolomeo A; Giubileo F; Grillo A; Luongo G; Iemmo L; Urban F; Lozzi L; Capista D; Nardone M; Passacantando M
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31717979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved photoexcited charge-carrier dynamics in phase-engineered monolayer MoS2.
    Yamaguchi H; Blancon JC; Kappera R; Lei S; Najmaei S; Mangum BD; Gupta G; Ajayan PM; Lou J; Chhowalla M; Crochet JJ; Mohite AD
    ACS Nano; 2015 Jan; 9(1):840-9. PubMed ID: 25521210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field-enhanced photocurrent spectroscopy of excitonic states in single-wall carbon nanotubes.
    Mohite A; Lin JT; Sumanasekera G; Alphenaar BW
    Nano Lett; 2006 Jul; 6(7):1369-73. PubMed ID: 16834413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially Resolved Potential Distribution in Carbon Nanotube Cross-Junction Devices.
    Lee EJH; Balasubramanian K; Burghard M; Kern K
    Adv Mater; 2009 Jul; 21(25-26):2720-2724. PubMed ID: 36751059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy.
    Howell SL; Padalkar S; Yoon K; Li Q; Koleske DD; Wierer JJ; Wang GT; Lauhon LJ
    Nano Lett; 2013 Nov; 13(11):5123-8. PubMed ID: 24099617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Analytic Formula for Minority Carrier Decay Length Extraction from Scanning Photocurrent Profiles in Ohmic-Contact Nanowire Devices.
    Chu CH; Mao MH; Yang CW; Lin HH
    Sci Rep; 2019 Jul; 9(1):9426. PubMed ID: 31263209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Measurement of π Coupling at the Single-Molecule Level using a Carbon Nanotube Force Sensor.
    Hong T; Wang T; Xu YQ
    Nano Lett; 2018 Dec; 18(12):7883-7888. PubMed ID: 30457874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comment on: "Photocurrent amplification at carbon nanotube-metal contacts".
    Omari M; Kouklin NA
    Adv Mater; 2011 Sep; 23(33):3747-50. PubMed ID: 21769951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature.
    Raynaud C; Claude T; Borel A; Amara MR; Graf A; Zaumseil J; Lauret JS; Chassagneux Y; Voisin C
    Nano Lett; 2019 Oct; 19(10):7210-7216. PubMed ID: 31487461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.