BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 27575624)

  • 21. An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with MASSyPup64.
    Winkler R
    PeerJ; 2015; 3():e1401. PubMed ID: 26618079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. glyXtool
    Pioch M; Hoffmann M; Pralow A; Reichl U; Rapp E
    Anal Chem; 2018 Oct; 90(20):11908-11916. PubMed ID: 30252445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Systematic Bioinformatics Approach to Identify High Quality Mass Spectrometry Data and Functionally Annotate Proteins and Proteomes.
    Islam MT; Mohamedali A; Ahn SB; Nawar I; Baker MS; Ranganathan S
    Methods Mol Biol; 2017; 1549():163-176. PubMed ID: 27975291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PaDuA: A Python Library for High-Throughput (Phospho)proteomics Data Analysis.
    Ressa A; Fitzpatrick M; van den Toorn H; Heck AJR; Altelaar M
    J Proteome Res; 2019 Feb; 18(2):576-584. PubMed ID: 30525654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TOPP--the OpenMS proteomics pipeline.
    Kohlbacher O; Reinert K; Gröpl C; Lange E; Pfeifer N; Schulz-Trieglaff O; Sturm M
    Bioinformatics; 2007 Jan; 23(2):e191-7. PubMed ID: 17237091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The proteios software environment: an extensible multiuser platform for management and analysis of proteomics data.
    Häkkinen J; Vincic G; Månsson O; Wårell K; Levander F
    J Proteome Res; 2009 Jun; 8(6):3037-43. PubMed ID: 19354269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scalable Data Analysis in Proteomics and Metabolomics Using BioContainers and Workflows Engines.
    Perez-Riverol Y; Moreno P
    Proteomics; 2020 May; 20(9):e1900147. PubMed ID: 31657527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. eMZed: an open source framework in Python for rapid and interactive development of LC/MS data analysis workflows.
    Kiefer P; Schmitt U; Vorholt JA
    Bioinformatics; 2013 Apr; 29(7):963-4. PubMed ID: 23418185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptimapper: proteogenomics workflow for the expert annotation of eukaryotic genomes.
    Guillot L; Delage L; Viari A; Vandenbrouck Y; Com E; Ritter A; Lavigne R; Marie D; Peterlongo P; Potin P; Pineau C
    BMC Genomics; 2019 Jan; 20(1):56. PubMed ID: 30654742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry.
    Brusniak MY; Kwok ST; Christiansen M; Campbell D; Reiter L; Picotti P; Kusebauch U; Ramos H; Deutsch EW; Chen J; Moritz RL; Aebersold R
    BMC Bioinformatics; 2011 Mar; 12():78. PubMed ID: 21414234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteogenomics from a bioinformatics angle: A growing field.
    Menschaert G; Fenyö D
    Mass Spectrom Rev; 2017 Sep; 36(5):584-599. PubMed ID: 26670565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein Inference Using PIA Workflows and PSI Standard File Formats.
    Uszkoreit J; Perez-Riverol Y; Eggers B; Marcus K; Eisenacher M
    J Proteome Res; 2019 Feb; 18(2):741-747. PubMed ID: 30474983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scientific workflow optimization for improved peptide and protein identification.
    Holl S; Mohammed Y; Zimmermann O; Palmblad M
    BMC Bioinformatics; 2015 Sep; 16(1):284. PubMed ID: 26335531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Qupe--a Rich Internet Application to take a step forward in the analysis of mass spectrometry-based quantitative proteomics experiments.
    Albaum SP; Neuweger H; Fränzel B; Lange S; Mertens D; Trötschel C; Wolters D; Kalinowski J; Nattkemper TW; Goesmann A
    Bioinformatics; 2009 Dec; 25(23):3128-34. PubMed ID: 19808875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trans-proteomic pipeline: a pipeline for proteomic analysis.
    Pedrioli PG
    Methods Mol Biol; 2010; 604():213-38. PubMed ID: 20013374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics.
    Bichmann L; Nelde A; Ghosh M; Heumos L; Mohr C; Peltzer A; Kuchenbecker L; Sachsenberg T; Walz JS; Stevanović S; Rammensee HG; Kohlbacher O
    J Proteome Res; 2019 Nov; 18(11):3876-3884. PubMed ID: 31589052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
    Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y
    J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From proteomics to systems biology: MAPA, MASS WESTERN, PROMEX, and COVAIN as a user-oriented platform.
    Weckwerth W; Wienkoop S; Hoehenwarter W; Egelhofer V; Sun X
    Methods Mol Biol; 2014; 1072():15-27. PubMed ID: 24136511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Standardized Workflow for Mass-Spectrometry-Based Single-Cell Proteomics Data Processing and Analysis Using the scp Package.
    Grégoire S; Vanderaa C; Dit Ruys SP; Kune C; Mazzucchelli G; Vertommen D; Gatto L
    Methods Mol Biol; 2024; 2817():177-220. PubMed ID: 38907155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accessible and reproducible mass spectrometry imaging data analysis in Galaxy.
    Föll MC; Moritz L; Wollmann T; Stillger MN; Vockert N; Werner M; Bronsert P; Rohr K; Grüning BA; Schilling O
    Gigascience; 2019 Dec; 8(12):. PubMed ID: 31816088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.