BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 27575935)

  • 1. Wnt3A Induces GSK-3β Phosphorylation and β-Catenin Accumulation Through RhoA/ROCK.
    Kim JG; Kim MJ; Choi WJ; Moon MY; Kim HJ; Lee JY; Kim J; Kim SC; Kang SG; Seo GY; Kim PH; Park JB
    J Cell Physiol; 2017 May; 232(5):1104-1113. PubMed ID: 27575935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RhoA GTPase phosphorylated at tyrosine 42 by src kinase binds to β-catenin and contributes transcriptional regulation of vimentin upon Wnt3A.
    Kim JG; Mahmud S; Min JK; Lee YB; Kim H; Kang DC; Park HS; Seong J; Park JB
    Redox Biol; 2021 Apr; 40():101842. PubMed ID: 33388549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Wnt3a-mediated nuclear beta-catenin accumulation and activation by integrin-linked kinase in mammalian cells.
    Oloumi A; Syam S; Dedhar S
    Oncogene; 2006 Dec; 25(59):7747-57. PubMed ID: 16799642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROCK2 regulates bFGF-induced proliferation of SH-SY5Y cells through GSK-3β and β-catenin pathway.
    Boku S; Nakagawa S; Toda H; Kato A; Takamura N; Omiya Y; Inoue T; Koyama T
    Brain Res; 2013 Jan; 1492():7-17. PubMed ID: 23211630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wnt3a ligand facilitates autophagy in hippocampal neurons by modulating a novel GSK-3β-AMPK axis.
    Ríos JA; Godoy JA; Inestrosa NC
    Cell Commun Signal; 2018 Apr; 16(1):15. PubMed ID: 29642895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cross-talk between canonical and non-canonical Wnt-dependent pathways regulates P-glycoprotein expression in human blood-brain barrier cells.
    Pinzón-Daza ML; Salaroglio IC; Kopecka J; Garzòn R; Couraud PO; Ghigo D; Riganti C
    J Cereb Blood Flow Metab; 2014 Aug; 34(8):1258-69. PubMed ID: 24896565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of GSK-3beta promotes survival and proliferation of megakaryocytic cells through a beta-catenin-independent pathway.
    Soda M; Willert K; Kaushansky K; Geddis AE
    Cell Signal; 2008 Dec; 20(12):2317-23. PubMed ID: 18804163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of β-catenin nuclear dynamics by GSK-3β involves a LEF-1 positive feedback loop.
    Jamieson C; Sharma M; Henderson BR
    Traffic; 2011 Aug; 12(8):983-99. PubMed ID: 21496192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin induces phosphorylation of pyruvate dehydrogenase through RhoA activation pathway in HepG2 cells.
    Islam R; Kim JG; Park Y; Cho JY; Cap KC; Kho AR; Chung WS; Suh SW; Park JB
    FASEB J; 2019 Feb; 33(2):2072-2083. PubMed ID: 30226812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycyclic aromatic hydrocarbons and dibutyl phthalate disrupt dorsal-ventral axis determination via the Wnt/β-catenin signaling pathway in zebrafish embryos.
    Fairbairn EA; Bonthius J; Cherr GN
    Aquat Toxicol; 2012 Nov; 124-125():188-96. PubMed ID: 22975441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 14-3-3σ regulates β-catenin-mediated mouse embryonic stem cell proliferation by sequestering GSK-3β.
    Chang TC; Liu CC; Hsing EW; Liang SM; Chi YH; Sung LY; Lin SP; Shen TL; Ko BS; Yen BL; Yet SF; Wu KK; Liou JY
    PLoS One; 2012; 7(6):e40193. PubMed ID: 22768254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear GSK-3beta inhibits the canonical Wnt signalling pathway in a beta-catenin phosphorylation-independent manner.
    Caspi M; Zilberberg A; Eldar-Finkelman H; Rosin-Arbesfeld R
    Oncogene; 2008 Jun; 27(25):3546-55. PubMed ID: 18223684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Down-regulation of β-catenin and the associated migration ability by Taiwanin C in arecoline and 4-NQO-induced oral cancer cells via GSK-3β activation.
    Hsieh CH; Hsu HH; Shibu MA; Day CH; Bau DT; Ho CC; Lin YM; Chen MC; Wang SH; Huang CY
    Mol Carcinog; 2017 Mar; 56(3):1055-1067. PubMed ID: 27648737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green tea polyphenol EGCG suppresses Wnt/β-catenin signaling by promoting GSK-3β- and PP2A-independent β-catenin phosphorylation/degradation.
    Oh S; Gwak J; Park S; Yang CS
    Biofactors; 2014; 40(6):586-95. PubMed ID: 25352148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dexmedetomidine-mediated Wnt Pathway Inhibits Sevoflurane-induced Cognitive Impairment in Neonatal Rats].
    Yang Y; Yang L; Wu Y; Yuan J
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2021 Apr; 43(2):235-246. PubMed ID: 33966704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GSK-3β suppresses the proliferation of rat hepatic oval cells through modulating Wnt/β-catenin signaling pathway.
    Ji XK; Xie YK; Zhong JQ; Xu QG; Zeng QQ; Wang Y; Zhang QY; Shan YF
    Acta Pharmacol Sin; 2015 Mar; 36(3):334-42. PubMed ID: 25661318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice.
    Wang Y; Lam JB; Lam KS; Liu J; Lam MC; Hoo RL; Wu D; Cooper GJ; Xu A
    Cancer Res; 2006 Dec; 66(23):11462-70. PubMed ID: 17145894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel strategy to increase the proliferative potential of adult human β-cells while maintaining their differentiated phenotype.
    Aly H; Rohatgi N; Marshall CA; Grossenheider TC; Miyoshi H; Stappenbeck TS; Matkovich SJ; McDaniel ML
    PLoS One; 2013; 8(6):e66131. PubMed ID: 23776620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 Inhibition and GSK-3β inactivation.
    Zhan L; Liu D; Wen H; Hu J; Pang T; Sun W; Xu E
    FASEB J; 2019 Aug; 33(8):9291-9307. PubMed ID: 31120770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylshikonin attenuates angiotensin II-induced proliferation and motility of human brain smooth muscle cells by inhibiting Wnt/β-catenin signaling.
    Li Z; Yan Z; Xu C; Dong Y; Xiong Y; Dai Y
    Hum Cell; 2018 Jul; 31(3):242-250. PubMed ID: 29687375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.