BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 27576068)

  • 1. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.
    Castellazzi P; Martel R; Galloway DL; Longuevergne L; Rivera A
    Ground Water; 2016 Nov; 54(6):768-780. PubMed ID: 27576068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Sentinel-1 and GRACE satellite data to monitor the hydrological variations within the Tulare Basin, California.
    Vasco DW; Kim KH; Farr TG; Reager JT; Bekaert D; Sangha SS; Rutqvist J; Beaudoing HK
    Sci Rep; 2022 Mar; 12(1):3867. PubMed ID: 35264619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Groundwater Loss and Aquifer System Compaction in San Joaquin Valley During 2012-2015 Drought.
    Ojha C; Werth S; Shirzaei M
    J Geophys Res Solid Earth; 2019 Mar; 124(3):3127-3143. PubMed ID: 31218156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Subsidence Analysis by Multi-Temporal InSAR and GRACE: A Case Study in Beijing.
    Guo J; Zhou L; Yao C; Hu J
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Groundwater Monitoring Using GRACE and GLDAS Data after Downscaling Within Basaltic Aquifer System.
    Verma K; Katpatal YB
    Ground Water; 2020 Jan; 58(1):143-151. PubMed ID: 31359409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving multi-technique monitoring using Sentinel-1 and Cosmo-SkyMed data and upgrading groundwater model capabilities.
    Ezquerro P; Tomás R; Béjar-Pizarro M; Fernández-Merodo JA; Guardiola-Albert C; Staller A; Sánchez-Sobrino JA; Herrera G
    Sci Total Environ; 2020 Feb; 703():134757. PubMed ID: 31759706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Geophysical and Remote Sensing Data for Assessment of Aquifer Depletion and Related Land Deformation.
    Othman A; Sultan M; Becker R; Alsefry S; Alharbi T; Gebremichael E; Alharbi H; Abdelmohsen K
    Surv Geophys; 2018; 39(3):543-566. PubMed ID: 31258224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogeological characterisation of groundwater over Brazil using remotely sensed and model products.
    Hu K; Awange JL; Khandu ; Forootan E; Goncalves RM; Fleming K
    Sci Total Environ; 2017 Dec; 599-600():372-386. PubMed ID: 28482297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating aquifer stress and resilience with GRACE information at different spatial scales in Cambodia.
    Sokneth L; Mohanasundaram S; Shrestha S; Babel MS; Virdis SGP
    Hydrogeol J; 2022; 30(8):2359-2377. PubMed ID: 36415671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Decade of Ground Deformation in Kunming (China) Revealed by Multi-Temporal Synthetic Aperture Radar Interferometry (InSAR) Technique.
    Zhu W; Li WL; Zhang Q; Yang Y; Zhang Y; Qu W; Wang CS
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Climate-Induced Groundwater Depletion in GRACE Observations.
    Thomas BF; Famiglietti JS
    Sci Rep; 2019 Mar; 9(1):4124. PubMed ID: 30858389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer?
    Long D; Chen X; Scanlon BR; Wada Y; Hong Y; Singh VP; Chen Y; Wang C; Han Z; Yang W
    Sci Rep; 2016 Apr; 6():24398. PubMed ID: 27075595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.
    Iqbal N; Hossain F; Lee H; Akhter G
    Environ Monit Assess; 2017 Mar; 189(3):128. PubMed ID: 28243930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the potential for groundwater-related ground deformation in Southern New South Wales, Australia.
    Castellazzi P; Schmid W; Fu G
    Sci Total Environ; 2023 Oct; 895():165167. PubMed ID: 37379933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of groundwater storage changes over losing and gaining aquifers of China using GRACE satellites, modeling and in-situ observations.
    Yang J; Pan Y; Zhang C; Gong H; Xu L; Huang Z; Lu S
    Sci Total Environ; 2024 Aug; 938():173514. PubMed ID: 38802015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China.
    Hwang C; Yang Y; Kao R; Han J; Shum CK; Galloway DL; Sneed M; Hung WC; Cheng YS; Li F
    Sci Rep; 2016 Jun; 6():28160. PubMed ID: 27324935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Land Subsidence and Its Relations with Sinkhole Activity in Karapınar Region, Turkey: A Multi-Sensor InSAR Time Series Study.
    Orhan O; Oliver-Cabrera T; Wdowinski S; Yalvac S; Yakar M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Satellite-based monitoring of groundwater depletion in California's Central Valley.
    Vasco DW; Farr TG; Jeanne P; Doughty C; Nico P
    Sci Rep; 2019 Nov; 9(1):16053. PubMed ID: 31690776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the association between climate variability and the Nile's water level fluctuations and water storage changes during 1992-2016.
    Khaki M; Awange J; Forootan E; Kuhn M
    Sci Total Environ; 2018 Dec; 645():1509-1521. PubMed ID: 30248872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.
    Li L; Zhang M; Katzenstein K
    Ground Water; 2017 Nov; 55(6):871-878. PubMed ID: 28542717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.