BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27576139)

  • 1. Effects of whole spine alignment patterns on neck responses in rear end impact.
    Sato F; Odani M; Miyazaki Y; Yamazaki K; Östh J; Svensson M
    Traffic Inj Prev; 2017 Feb; 18(2):199-206. PubMed ID: 27576139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Seat Back Inclination on Spinal Alignment in Automotive Seating Postures.
    Sato F; Miyazaki Y; Morikawa S; Ferreiro Perez A; Schick S; Brolin K; Svensson M
    Front Bioeng Biotechnol; 2021; 9():684043. PubMed ID: 34409020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship Between Cervical, Thoracic, and Lumbar Spinal Alignments in Automotive Seated Posture.
    Sato F; Miyazaki Y; Morikawa S; Perez AF; Schick S; Yamazaki K; Brolin K; Svensson MY
    J Biomech Eng; 2019 Dec; 141(12):. PubMed ID: 31596923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anthropometric specifications, development, and evaluation of EvaRID--a 50th percentile female rear impact finite element dummy model.
    Carlsson A; Chang F; Lemmen P; Kullgren A; Schmitt KU; Linder A; Svensson MY
    Traffic Inj Prev; 2014; 15(8):855-65. PubMed ID: 24484526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal loads in the cervical spine during motor vehicle rear-end impacts: the effect of acceleration and head-to-head restraint proximity.
    Tencer AF; Mirza S; Bensel K
    Spine (Phila Pa 1976); 2002 Jan; 27(1):34-42. PubMed ID: 11805633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A female head-neck model for rear impact simulations.
    Östh J; Mendoza-Vazquez M; Sato F; Svensson MY; Linder A; Brolin K
    J Biomech; 2017 Jan; 51():49-56. PubMed ID: 27988036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Average male and female virtual dummy model (BioRID and EvaRID) simulations with two seat concepts in the Euro NCAP low severity rear impact test configuration.
    Linder A; Holmqvist K; Svensson MY
    Accid Anal Prev; 2018 May; 114():62-70. PubMed ID: 28622848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Qualitative analysis of neck kinematics during low-speed rear-end impact.
    Luan F; Yang KH; Deng B; Begeman PC; Tashman S; King AI
    Clin Biomech (Bristol, Avon); 2000 Nov; 15(9):649-57. PubMed ID: 10946097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do "whiplash injuries" occur in low-speed rear impacts?
    Castro WH; Schilgen M; Meyer S; Weber M; Peuker C; Wörtler K
    Eur Spine J; 1997; 6(6):366-75. PubMed ID: 9455663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of potential whiplash injuries for different occupant seated positions during rear end accidents.
    Omerović S; Tomasch E; Gutsche AJ; Prebil I
    Acta Bioeng Biomech; 2016; 18(4):145-158. PubMed ID: 28133383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normalized vertebral-level specific range of motion corridors for female spines in rear impact.
    Yoganandan N; Purushothaman Y; Humm J
    Traffic Inj Prev; 2021; 22(sup1):S137-S140. PubMed ID: 34699297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Out-of-Position Rear Impact Tissue-Level Investigation Using Detailed Finite Element Neck Model.
    Shateri H; Cronin DS
    Traffic Inj Prev; 2015; 16(7):698-708. PubMed ID: 25664486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of standing or seated pelvis on dummy responses in rear impacts.
    Viano DC; Parenteau CS; Burnett R
    Accid Anal Prev; 2012 Mar; 45():423-31. PubMed ID: 22269526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of cervical spine kinematics and joint capsule strain in rear impacts using a human FE model.
    Kitagawa Y; Yasuki T; Hasegawa J
    Stapp Car Crash J; 2006 Nov; 50():545-66. PubMed ID: 17311176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of whiplash injuries in the upper cervical spine using a detailed neck model.
    Fice JB; Cronin DS
    J Biomech; 2012 Apr; 45(6):1098-102. PubMed ID: 22284991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of control strategies for the cervical muscles of an average female head-neck finite element model.
    Putra IPA; Iraeus J; Thomson R; Svensson MY; Linder A; Sato F
    Traffic Inj Prev; 2019; 20(sup2):S116-S122. PubMed ID: 31617760
    [No Abstract]   [Full Text] [Related]  

  • 17. Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact.
    Cronin DS
    J Mech Behav Biomed Mater; 2014 May; 33():55-66. PubMed ID: 23466282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the intervertebral neck injury criterion using simulated rear impacts.
    Panjabi MM; Ito S; Ivancic PC; Rubin W
    J Biomech; 2005 Aug; 38(8):1694-701. PubMed ID: 15958227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head-turned rear impact causing dynamic cervical intervertebral foramen narrowing: implications for ganglion and nerve root injury.
    Tominaga Y; Maak TG; Ivancic PC; Panjabi MM; Cunningham BW
    J Neurosurg Spine; 2006 May; 4(5):380-7. PubMed ID: 16703905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cervical kyphotic deformity type on the motion characteristics and dynamic spinal cord compression.
    Ruangchainikom M; Daubs MD; Suzuki A; Hayashi T; Weintraub G; Lee CJ; Inoue H; Tian H; Aghdasi B; Scott TP; Phan KH; Chotivichit A; Wang JC
    Spine (Phila Pa 1976); 2014 May; 39(12):932-8. PubMed ID: 24718067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.