These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27576139)

  • 21. Comparison of cervical vertebrae rotations for PMHS and BioRID II in rear impacts.
    Kang YS; Moorhouse K; Herriott R; Bolte JH
    Traffic Inj Prev; 2013; 14 Suppl():S136-47. PubMed ID: 23905990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motion analysis of cervical vertebrae during whiplash loading.
    Kaneoka K; Ono K; Inami S; Hayashi K
    Spine (Phila Pa 1976); 1999 Apr; 24(8):763-9; discussion 770. PubMed ID: 10222526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of abnormal posture on capsular ligament elongations in a computational model subjected to whiplash loading.
    Stemper BD; Yoganandan N; Pintar FA
    J Biomech; 2005 Jun; 38(6):1313-23. PubMed ID: 15863116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitivity of head and cervical spine injury measures to impact factors relevant to rollover crashes.
    Mattos GA; Mcintosh AS; Grzebieta RH; Yoganandan N; Pintar FA
    Traffic Inj Prev; 2015; 16 Suppl 1():S140-7. PubMed ID: 26027967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cervical vertebral realignment when voluntarily adopting a protective neck posture.
    Newell RS; Siegmund GP; Blouin JS; Street J; Cripton PA
    Spine (Phila Pa 1976); 2014 Jul; 39(15):E885-93. PubMed ID: 24825155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Risk of injury of the cervical spine in sled tests in female volunteers.
    Dehner C; Elbel M; Schick S; Walz F; Hell W; Kramer M
    Clin Biomech (Bristol, Avon); 2007 Jul; 22(6):615-22. PubMed ID: 17399873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelastic finite element analysis of the cervical intervertebral discs in conjunction with a multi-body dynamic model of the human head and neck.
    Esat V; Acar M
    Proc Inst Mech Eng H; 2009 Feb; 223(2):249-62. PubMed ID: 19278200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pressure aberrations inside the spinal canal during rear-end impact.
    Schmitt KU; Muser M; Niederer P; Walz F
    Pain Res Manag; 2003; 8(2):86-92. PubMed ID: 12879139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Whiplash-Associated Disorders: Occupant Kinematics and Neck Morphology.
    Stemper BD; Corner BD
    J Orthop Sports Phys Ther; 2016 Oct; 46(10):834-844. PubMed ID: 27690838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding whiplash injury and prevention mechanisms using a human model of the neck.
    Ivancic PC; Xiao M
    Accid Anal Prev; 2011 Jul; 43(4):1392-9. PubMed ID: 21545871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of pediatric growth on cervical spine kinematics and deformations in automotive crashes.
    Alvarez VS; Kleiven S
    J Biomech; 2018 Apr; 71():76-83. PubMed ID: 29456172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of Simulation Methods in Cervical Spine Dynamics.
    Sun MS; Cai XY; Liu Q; Du CF; Mo ZJ
    J Healthc Eng; 2020; 2020():7289648. PubMed ID: 32952989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gender dependent cervical spine segmental kinematics during whiplash.
    Stemper BD; Yoganandan N; Pintar FA
    J Biomech; 2003 Sep; 36(9):1281-9. PubMed ID: 12893036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of morphology on cervical injury characteristics.
    Stemper BD; Pintar FA; Rao RD
    Spine (Phila Pa 1976); 2011 Dec; 36(25 Suppl):S180-6. PubMed ID: 22101749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash.
    Iwamoto M; Nakahira Y; Kimpara H
    Traffic Inj Prev; 2015; 16 Suppl 1():S36-48. PubMed ID: 26027974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of initial seated position in low speed rear-end impacts: a comparison with the TNO rear impact dummy (TRID) model.
    Venkataramana MP; Hans SA; Bawab SY; Keifer OP; Woodhouse ML; Layson PD
    Traffic Inj Prev; 2005 Mar; 6(1):77-85. PubMed ID: 15823879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neck posture and muscle activity are different when upside down: a human volunteer study.
    Newell RS; Blouin JS; Street J; Cripton PA; Siegmund GP
    J Biomech; 2013 Nov; 46(16):2837-43. PubMed ID: 24095057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental analysis of a new flexible neck model for low-speed rear-end collisions.
    Yoshida H; Tsutsumi S
    Accid Anal Prev; 2001 May; 33(3):305-12. PubMed ID: 11235792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of rotated head posture on dynamic vertebral artery elongation during simulated rear impact.
    Ivancic PC; Ito S; Tominaga Y; Carlson EJ; Rubin W; Panjabi MM
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):213-20. PubMed ID: 16364516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic intervertebral foramen narrowing during simulated rear impact.
    Panjabi MM; Maak TG; Ivancic PC; Ito S
    Spine (Phila Pa 1976); 2006 Mar; 31(5):E128-34. PubMed ID: 16508536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.