BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27576183)

  • 21. Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms.
    Gao L; Han J; Liu H; Qu X; Lu Z; Bie X
    Antonie Van Leeuwenhoek; 2017 Aug; 110(8):1007-1018. PubMed ID: 28477175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis.
    Li X; Yang H; Zhang D; Li X; Yu H; Shen Z
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):93-103. PubMed ID: 25366377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning of srfA operon from Bacillus subtilis C9 and its expression in E. coli.
    Lee YK; Yoon BD; Yoon JH; Lee SG; Song JJ; Kim JG; Oh HM; Kim HS
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):567-72. PubMed ID: 17268783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis.
    Nakano MM; Marahiel MA; Zuber P
    J Bacteriol; 1988 Dec; 170(12):5662-8. PubMed ID: 2848009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis.
    Wang C; Cao Y; Wang Y; Sun L; Song H
    Microb Cell Fact; 2019 May; 18(1):90. PubMed ID: 31122258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of surfactin synthetase subunits in srfA mutants of Bacillus subtilis OKB105.
    Vollenbroich D; Mehta N; Zuber P; Vater J; Kamp RM
    J Bacteriol; 1994 Jan; 176(2):395-400. PubMed ID: 8288534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetics of subpeptin JM4-A and subpeptin JM4-B production by Bacillus subtilis JM4.
    Wu S; Zhong J; Huan L
    Biochem Biophys Res Commun; 2006 Jun; 344(4):1147-54. PubMed ID: 16647040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.
    Wang M; Fu J; Zhang X; Chen T
    Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An operon encoding a novel ABC-type transport system in Bacillus subtilis.
    Rodriguez F; Grandi G
    Microbiology (Reading); 1995 Jul; 141 ( Pt 7)():1781-4. PubMed ID: 7551042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of pfkA chromosomal interruption on growth, sporulation, and production of organic acids in Bacillus subtilis.
    Muñoz-Márquez ME; Ponce-Rivas E
    J Basic Microbiol; 2010 Jun; 50(3):232-40. PubMed ID: 20473954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organization and characterization of genetic regions in Bacillus subtilis subsp. krictiensis ATCC55079 associated with the biosynthesis of iturin and surfactin compounds.
    Kim YT; Park BK; Kim SE; Lee WJ; Moon JS; Cho MS; Park HY; Hwang I; Kim SU
    PLoS One; 2017; 12(12):e0188179. PubMed ID: 29267290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
    Lulko AT; Buist G; Kok J; Kuipers OP
    J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global control of cysteine metabolism by CymR in Bacillus subtilis.
    Even S; Burguière P; Auger S; Soutourina O; Danchin A; Martin-Verstraete I
    J Bacteriol; 2006 Mar; 188(6):2184-97. PubMed ID: 16513748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis.
    Schneider A; Marahiel MA
    Arch Microbiol; 1998 May; 169(5):404-10. PubMed ID: 9560421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenotypic characterization and complementation analysis of Bacillus subtilis 6S RNA single and double deletion mutants.
    Hoch PG; Burenina OY; Weber MH; Elkina DA; Nesterchuk MV; Sergiev PV; Hartmann RK; Kubareva EA
    Biochimie; 2015 Oct; 117():87-99. PubMed ID: 25576829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Sporulation, competence development and biopesticide activity of a Bacillus subtilis mutant].
    Wang X; Luo C; Liu Y; Liu Y; Nie Y; Chen Z
    Wei Sheng Wu Xue Bao; 2009 Oct; 49(10):1295-300. PubMed ID: 20069874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling leucine's metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis.
    Coutte F; Niehren J; Dhali D; John M; Versari C; Jacques P
    Biotechnol J; 2015 Aug; 10(8):1216-34. PubMed ID: 26220295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping.
    Schneider A; Stachelhaus T; Marahiel MA
    Mol Gen Genet; 1998 Feb; 257(3):308-18. PubMed ID: 9520265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rational strain improvement for surfactin production: enhancing the yield and generating novel structures.
    Hu F; Liu Y; Li S
    Microb Cell Fact; 2019 Feb; 18(1):42. PubMed ID: 30819187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the Bacillus subtilis ywsC gene, involved in gamma-polyglutamic acid production.
    Urushibata Y; Tokuyama S; Tahara Y
    J Bacteriol; 2002 Jan; 184(2):337-43. PubMed ID: 11751809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.