These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27576183)

  • 41. Comprehensive genomic analysis of Bacillus subtilis and Bacillus paralicheniformis associated with the pearl millet panicle reveals their antimicrobial potential against important plant pathogens.
    Ashajyothi M; Mahadevakumar S; Venkatesh YN; Sarma PVSRN; Danteswari C; Balamurugan A; Prakash G; Khandelwal V; Tarasatyavathi C; Podile AR; Mysore KS; Chandranayaka S
    BMC Plant Biol; 2024 Mar; 24(1):197. PubMed ID: 38500040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic requirements for potassium ion-dependent colony spreading in Bacillus subtilis.
    Kinsinger RF; Kearns DB; Hale M; Fall R
    J Bacteriol; 2005 Dec; 187(24):8462-9. PubMed ID: 16321950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of Bacillus subtilis DNA Glycosylase MutM in Counteracting Oxidatively Induced DNA Damage and in Stationary-Phase-Associated Mutagenesis.
    Gómez-Marroquín M; Vidales LE; Debora BN; Santos-Escobar F; Obregón-Herrera A; Robleto EA; Pedraza-Reyes M
    J Bacteriol; 2015 Jun; 197(11):1963-71. PubMed ID: 25825434
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis.
    Toya Y; Hirasawa T; Ishikawa S; Chumsakul O; Morimoto T; Liu S; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    Biosci Biotechnol Biochem; 2015; 79(12):2073-80. PubMed ID: 26120821
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC.
    Jung J; Yu KO; Ramzi AB; Choe SH; Kim SW; Han SO
    Biotechnol Bioeng; 2012 Sep; 109(9):2349-56. PubMed ID: 22511326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters.
    Kleerebezem M; Bongers R; Rutten G; de Vos WM; Kuipers OP
    Peptides; 2004 Sep; 25(9):1415-24. PubMed ID: 15374645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacillus subtilis rapD, a direct target of transcription repression by RghR, negatively regulates srfA expression.
    Ogura M; Fujita Y
    FEMS Microbiol Lett; 2007 Mar; 268(1):73-80. PubMed ID: 17227471
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase.
    Symmank H; Franke P; Saenger W; Bernhard F
    Protein Eng; 2002 Nov; 15(11):913-21. PubMed ID: 12538911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional analysis of fengycin synthetase FenD.
    Lin TP; Chen CL; Fu HC; Wu CY; Lin GH; Huang SH; Chang LK; Liu ST
    Biochim Biophys Acta; 2005 Aug; 1730(2):159-64. PubMed ID: 16102594
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unusual Biosynthesis and Structure of Locillomycins from Bacillus subtilis 916.
    Luo C; Liu X; Zhou X; Guo J; Truong J; Wang X; Zhou H; Li X; Chen Z
    Appl Environ Microbiol; 2015 Oct; 81(19):6601-9. PubMed ID: 26162886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A plasmid-born Rap-Phr system regulates surfactin production, sporulation and genetic competence in the heterologous host, Bacillus subtilis OKB105.
    Yang Y; Wu HJ; Lin L; Zhu QQ; Borriss R; Gao XW
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7241-52. PubMed ID: 25921807
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis.
    Lin TP; Chen CL; Chang LK; Tschen JS; Liu ST
    J Bacteriol; 1999 Aug; 181(16):5060-7. PubMed ID: 10438779
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance.
    Ren D; Bedzyk LA; Setlow P; Thomas SM; Ye RW; Wood TK
    Biotechnol Bioeng; 2004 May; 86(3):344-64. PubMed ID: 15083514
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain.
    Khochamit N; Siripornadulsil S; Sukon P; Siripornadulsil W
    Microbiol Res; 2015 Jan; 170():36-50. PubMed ID: 25440998
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In situ detection of the intermediates in the biosynthesis of surfactin, a lipoheptapeptide from Bacillus subtilis OKB 105, by whole-cell cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in combination with mutant analysis.
    Vater J; Wilde C; Kell H
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1493-8. PubMed ID: 19350532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioprospecting of soil-borne microorganisms and chemical dereplication of their anti-microbial constituents with the aid of UPLC-QTOF-MS and molecular networking approach.
    Khwathisi A; Madala NE; Traore AN; Samie A
    PeerJ; 2024; 12():e17364. PubMed ID: 39035159
    [TBL] [Abstract][Full Text] [Related]  

  • 57. LC-MS/MS proteomic analysis of starved Bacillus subtilis cells overexpressing ribonucleotide reductase (nrdEF): implications in stress-associated mutagenesis.
    Castro-Cerritos KV; Lopez-Torres A; Obregón-Herrera A; Wrobel K; Wrobel K; Pedraza-Reyes M
    Curr Genet; 2018 Feb; 64(1):215-222. PubMed ID: 28624879
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A lipA (yutB) mutant, encoding lipoic acid synthase, provides insight into the interplay between branched-chain and unsaturated fatty acid biosynthesis in Bacillus subtilis.
    Martin N; Lombardía E; Altabe SG; de Mendoza D; Mansilla MC
    J Bacteriol; 2009 Dec; 191(24):7447-55. PubMed ID: 19820084
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancement of a high efficient autoinducible expression system in Bacillus subtilis by promoter engineering.
    Cheng J; Guan C; Cui W; Zhou L; Liu Z; Li W; Zhou Z
    Protein Expr Purif; 2016 Nov; 127():81-87. PubMed ID: 27426133
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics.
    Reddy PJ; Ray S; Sathe GJ; Gajbhiye A; Prasad TS; Rapole S; Panda D; Srivastava S
    J Proteomics; 2015 Jan; 114():247-62. PubMed ID: 25464363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.