These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27576194)

  • 1. Examination of Effects of Low-Frequency Ultrasound on Scleral Permeability and Collagen Network.
    Suen WL; Jiang J; Wong HS; Qu J; Chau Y
    Ultrasound Med Biol; 2016 Nov; 42(11):2650-2661. PubMed ID: 27576194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound-enhanced penetration through sclera depends on frequency of sonication and size of macromolecules.
    Chau Y; Suen WL; Tse HY; Wong HS
    Eur J Pharm Sci; 2017 Mar; 100():273-279. PubMed ID: 28104474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-mediated transscleral delivery of macromolecules to the posterior segment of rabbit eye in vivo.
    Suen WL; Wong HS; Yu Y; Lau LC; Lo AC; Chau Y
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):4358-65. PubMed ID: 23722390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of inertial cavitation in the enhancement of in vitro transscleral drug delivery.
    Razavi A; Clement D; Fowler RA; Birer A; Chavrier F; Mestas JL; Romano F; Chapelon JY; Béglé A; Lafon C
    Ultrasound Med Biol; 2014 Jun; 40(6):1216-27. PubMed ID: 24613634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles.
    Huang D; Wang L; Dong Y; Pan X; Li G; Wu C
    Eur J Pharm Biopharm; 2014 Sep; 88(1):104-15. PubMed ID: 24833007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of scleral macromolecular permeability with prostaglandins.
    Weinreb RN
    Trans Am Ophthalmol Soc; 2001; 99():319-43. PubMed ID: 11797317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced transscleral delivery using superficial ultrasound exposure and drug-loaded hydrogel.
    Hu Y; Weng W; Zhang Y; Zhu Y; Zhang X
    Int J Pharm; 2023 Oct; 645():123359. PubMed ID: 37652279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in Collagen Structure and Permeability of Rat and Human Sclera After Crosslinking.
    Guo P; Miao Y; Jing Y; Akella S; Wang F; Park CY; Zhang C; Chuck RS
    Transl Vis Sci Technol; 2020 Aug; 9(9):45. PubMed ID: 32934895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trans-scleral delivery of macromolecules.
    Pescina S; Santi P; Ferrari G; Nicoli S
    Ther Deliv; 2011 Oct; 2(10):1331-49. PubMed ID: 22826887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and ultrastructural changes to the sclera in a mammalian model of high myopia.
    McBrien NA; Cornell LM; Gentle A
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2179-87. PubMed ID: 11527928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in posterior scleral collagen microstructure in canine eyes with an ADAMTS10 mutation.
    Boote C; Palko JR; Sorensen T; Mohammadvali A; Elsheikh A; Komáromy AM; Pan X; Liu J
    Mol Vis; 2016; 22():503-17. PubMed ID: 27212875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The elastic modulus and collagen of sclera increase during the early growth process.
    Wang C; Xie Y; Wang G
    J Mech Behav Biomed Mater; 2018 Jan; 77():566-571. PubMed ID: 29096121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Second Harmonic Generation Signals in Rabbit Sclera As a Tool for Evaluation of Therapeutic Tissue Cross-linking (TXL) for Myopia.
    Zyablitskaya M; Munteanu EL; Nagasaki T; Paik DC
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion of macromolecules through sclera.
    Miao H; Wu BD; Tao Y; Li XX
    Acta Ophthalmol; 2013 Feb; 91(1):e1-6. PubMed ID: 22998133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of Scleral Biomechanics and Collagen Fiber Alignment.
    Campbell IC; Sherwood JM; Overby DR; Hannon BG; Read AT; Raykin J; Ethier CR
    Methods Mol Biol; 2018; 1695():135-159. PubMed ID: 29190025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced FGF-2 movement through human sclera after exposure to latanoprost.
    Aihara M; Lindsey JD; Weinreb RN
    Invest Ophthalmol Vis Sci; 2001 Oct; 42(11):2554-9. PubMed ID: 11581197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound-enhanced intrascleral delivery of protein.
    Cheung AC; Yu Y; Tay D; Wong HS; Ellis-Behnke R; Chau Y
    Int J Pharm; 2010 Nov; 401(1-2):16-24. PubMed ID: 20868732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery.
    Tratta E; Pescina S; Padula C; Santi P; Nicoli S
    Eur J Pharm Biopharm; 2014 Sep; 88(1):116-22. PubMed ID: 24816128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetics of intraocular drug delivery of Oregon green 488-labeled triamcinolone by subtenon injection using ocular fluorophotometry in rabbit eyes.
    Lee SJ; Kim ES; Geroski DH; McCarey BE; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4506-14. PubMed ID: 18503001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion of high molecular weight compounds through sclera.
    Ambati J; Canakis CS; Miller JW; Gragoudas ES; Edwards A; Weissgold DJ; Kim I; Delori FC; Adamis AP
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1181-5. PubMed ID: 10752958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.