These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27576537)

  • 1. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen.
    Joseph SJ; Marti H; Didelot X; Read TD; Dean D
    Genome Biol Evol; 2016 Sep; 8(8):2613-23. PubMed ID: 27576537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro.
    Suchland RJ; Sandoz KM; Jeffrey BM; Stamm WE; Rockey DD
    Antimicrob Agents Chemother; 2009 Nov; 53(11):4604-11. PubMed ID: 19687238
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Marti H; Kim H; Joseph SJ; Dojiri S; Read TD; Dean D
    Front Microbiol; 2017; 8():156. PubMed ID: 28223970
    [No Abstract]   [Full Text] [Related]  

  • 4. The Chlamydia suis Genome Exhibits High Levels of Diversity, Plasticity, and Mobile Antibiotic Resistance: Comparative Genomics of a Recent Livestock Cohort Shows Influence of Treatment Regimes.
    Seth-Smith HM; Wanninger S; Bachmann N; Marti H; Qi W; Donati M; di Francesco A; Polkinghorne A; Borel N
    Genome Biol Evol; 2017 Mar; 9(3):750-760. PubMed ID: 28338777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal Recombination Targets in
    Suchland RJ; Carrell SJ; Wang Y; Hybiske K; Kim DB; Dimond ZE; Hefty PS; Rockey DD
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of Lateral Gene Transfer in
    Marti H; Suchland RJ; Rockey DD
    Front Cell Infect Microbiol; 2022; 12():861899. PubMed ID: 35321311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetracycline Susceptibility in Chlamydia suis Pig Isolates.
    Donati M; Balboni A; Laroucau K; Aaziz R; Vorimore F; Borel N; Morandi F; Vecchio Nepita E; Di Francesco A
    PLoS One; 2016; 11(2):e0149914. PubMed ID: 26913523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Pressure Promotes Tetracycline Resistance of Chlamydia Suis in Fattening Pigs.
    Wanninger S; Donati M; Di Francesco A; Hässig M; Hoffmann K; Seth-Smith HM; Marti H; Borel N
    PLoS One; 2016; 11(11):e0166917. PubMed ID: 27893834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and development of tetracycline-resistant Chlamydia suis.
    Lenart J; Andersen AA; Rockey DD
    Antimicrob Agents Chemother; 2001 Aug; 45(8):2198-203. PubMed ID: 11451674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of IScs605, an insertion element carried by tetracycline-resistant Chlamydia suis.
    Dugan J; Andersen AA; Rockey DD
    Microbiology (Reading); 2007 Jan; 153(Pt 1):71-9. PubMed ID: 17185536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene.
    Dugan J; Rockey DD; Jones L; Andersen AA
    Antimicrob Agents Chemother; 2004 Oct; 48(10):3989-95. PubMed ID: 15388463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different genetic elements carrying the tet(W) gene in two human clinical isolates of Streptococcus suis.
    Palmieri C; Princivalli MS; Brenciani A; Varaldo PE; Facinelli B
    Antimicrob Agents Chemother; 2011 Feb; 55(2):631-6. PubMed ID: 21115784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetracycline-resistant Chlamydia suis in cases of reproductive failure on Belgian, Cypriote and Israeli pig production farms.
    Schautteet K; De Clercq E; Miry C; Van Groenweghe F; Delava P; Kalmar I; Vanrompay D
    J Med Microbiol; 2013 Feb; 62(Pt 2):331-334. PubMed ID: 23105027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection for tetracycline-resistant Chlamydia suis in treated pigs.
    Borel N; Regenscheit N; Di Francesco A; Donati M; Markov J; Masserey Y; Pospischil A
    Vet Microbiol; 2012 Apr; 156(1-2):143-6. PubMed ID: 22036200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated
    Dingle KE; Didelot X; Quan TP; Eyre DW; Stoesser N; Marwick CA; Coia J; Brown D; Buchanan S; Ijaz UZ; Goswami C; Douce G; Fawley WN; Wilcox MH; Peto TEA; Walker AS; Crook DW
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution and in-vitro transfer of tetracycline resistance determinants in clinical and aquatic Acinetobacter strains.
    Guardabassi L; Dijkshoorn L; Collard JM; Olsen JE; Dalsgaard A
    J Med Microbiol; 2000 Oct; 49(10):929-936. PubMed ID: 11023190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Tetracycline and Rifamycin Resistant
    Marti H; Bommana S; Read TD; Pesch T; Prähauser B; Dean D; Borel N
    Front Microbiol; 2021; 12():630293. PubMed ID: 34276577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay of recombination and selection in the genomes of Chlamydia trachomatis.
    Joseph SJ; Didelot X; Gandhi K; Dean D; Read TD
    Biol Direct; 2011 May; 6():28. PubMed ID: 21615910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive genome analysis and comparisons of the swine pathogen, Chlamydia suis reveals unique ORFs and candidate host-specificity factors.
    Dimond ZE; Hefty PS
    Pathog Dis; 2021 Mar; 79(2):. PubMed ID: 32639528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-Occurrence of
    Kieckens E; Van den Broeck L; Van Gils M; Morré S; Vanrompay D
    Vector Borne Zoonotic Dis; 2018 Dec; 18(12):677-682. PubMed ID: 30251925
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.