BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27576710)

  • 1. Quantitative Immunofluorescence Analysis of Nucleolus-Associated Chromatin.
    Dillinger S; Németh A
    Methods Mol Biol; 2016; 1455():59-69. PubMed ID: 27576710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of histone posttranslational modifications from nucleolus-associated chromatin by mass spectrometry.
    Dillinger S; Garea AV; Deutzmann R; Németh A
    Methods Mol Biol; 2014; 1094():277-93. PubMed ID: 24162996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of pre-rRNA and mRNA is directed to a chromatin-poor compartment in the macronucleus of the spirotrichous ciliate Stylonychia lemnae.
    Postberg J; Alexandrova O; Lipps HJ
    Chromosome Res; 2006; 14(2):161-75. PubMed ID: 16544190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome organization and epigenetic marks in mouse germinal vesicle oocytes.
    Bonnet-Garnier A; Feuerstein P; Chebrout M; Fleurot R; Jan HU; Debey P; Beaujean N
    Int J Dev Biol; 2012; 56(10-12):877-87. PubMed ID: 23417410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic notes on the perinucleolar chromatin region in immature and mature human B-leukemia lymphocytes.
    Smetana K; Karban J; Jiraskova I; Klamova H; Trneny M
    Neoplasma; 2013; 60(3):284-9. PubMed ID: 23373997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Immunochemical study of nuclear matrix proteins localization in the structure of perinucleolar chromatin].
    Murasheva MI; Chentsov IuS
    Tsitologiia; 2014; 56(11):809-15. PubMed ID: 25707207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleolar localization/retention signal is responsible for transient accumulation of histone H2B in the nucleolus through electrostatic interactions.
    Musinova YR; Lisitsyna OM; Golyshev SA; Tuzhikov AI; Polyakov VY; Sheval EV
    Biochim Biophys Acta; 2011 Jan; 1813(1):27-38. PubMed ID: 21095207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Method to Identify Nucleolus-Associated Chromatin Domains (NADs).
    Carpentier MC; Picart-Picolo A; Pontvianne F
    Methods Mol Biol; 2018; 1675():99-109. PubMed ID: 29052188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling nuclear chromatin distribution using IsoConcentraChromJ: A flourescence imaging plugin for IsoRegional and IsoVolumetric based ratios analysis.
    Zeaiter L; Dabbous A; Baldini F; Pagano A; Bianchini P; Vergani L; Diaspro A
    PLoS One; 2024; 19(7):e0305809. PubMed ID: 38954704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct features of nucleolus-associated domains in mouse embryonic stem cells.
    Bizhanova A; Yan A; Yu J; Zhu LJ; Kaufman PD
    Chromosoma; 2020 Jun; 129(2):121-139. PubMed ID: 32219510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of chromatin organization in live cells by FRIC. Effects of the inner nuclear membrane protein Samp1.
    Bergqvist C; Niss F; Figueroa RA; Beckman M; Maksel D; Jafferali MH; Kulyté A; Ström AL; Hallberg E
    Nucleic Acids Res; 2019 May; 47(9):e49. PubMed ID: 30793190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis.
    Bhattacharya D; Talwar S; Mazumder A; Shivashankar GV
    Biophys J; 2009 May; 96(9):3832-9. PubMed ID: 19413989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear organization of nucleotide excision repair is mediated by RING1B dependent H2A-ubiquitylation.
    Chitale S; Richly H
    Oncotarget; 2017 May; 8(19):30870-30887. PubMed ID: 28416769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative localization of chromosomal loci by immunofluorescence.
    Brickner DG; Light W; Brickner JH
    Methods Enzymol; 2010; 470():569-80. PubMed ID: 20946825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical systems approaches for the analysis of histone modification readout.
    Soldi M; Bremang M; Bonaldi T
    Biochim Biophys Acta; 2014 Aug; 1839(8):657-68. PubMed ID: 24681439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule kinetic analysis of HP1-chromatin binding reveals a dynamic network of histone modification and DNA interactions.
    Bryan LC; Weilandt DR; Bachmann AL; Kilic S; Lechner CC; Odermatt PD; Fantner GE; Georgeon S; Hantschel O; Hatzimanikatis V; Fierz B
    Nucleic Acids Res; 2017 Oct; 45(18):10504-10517. PubMed ID: 28985346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of chromatin function through linker histone H1 variants.
    Kowalski A; Pałyga J
    Biol Cell; 2016 Dec; 108(12):339-356. PubMed ID: 27412812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human cytomegalovirus proteins PP65 and IEP72 are targeted to distinct compartments in nuclei and nuclear matrices of infected human embryo fibroblasts.
    Arcangeletti MC; De Conto F; Ferraglia F; Pinardi F; Gatti R; Orlandini G; Calderaro A; Motta F; Medici MC; Martinelli M; Valcavi P; Razin SV; Chezzi C; Dettori G
    J Cell Biochem; 2003 Dec; 90(5):1056-67. PubMed ID: 14624464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function.
    Pick H; Kilic S; Fierz B
    Biochim Biophys Acta; 2014 Aug; 1839(8):644-56. PubMed ID: 24768924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive computer-assisted analysis of chromosome 1 colocalization with nucleoli.
    Léger I; Guillaud M; Krief B; Brugal G
    Cytometry; 1994 Aug; 16(4):313-23. PubMed ID: 7988293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.