BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27577093)

  • 1. Phage display and structural studies reveal plasticity in substrate specificity of caspase-3a from zebrafish.
    Tucker MB; MacKenzie SH; Maciag JJ; Dirscherl Ackerman H; Swartz P; Yoder JA; Hamilton PT; Clay Clark A
    Protein Sci; 2016 Nov; 25(11):2076-2088. PubMed ID: 27577093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remodeling hydrogen bond interactions results in relaxed specificity of Caspase-3.
    Yao L; Swartz P; Hamilton PT; Clark AC
    Biosci Rep; 2021 Jan; 41(1):. PubMed ID: 33448281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resurrection of ancestral effector caspases identifies novel networks for evolution of substrate specificity.
    Grinshpon RD; Shrestha S; Titus-McQuillan J; Hamilton PT; Swartz PD; Clark AC
    Biochem J; 2019 Nov; 476(22):3475-3492. PubMed ID: 31675069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of S2-S4 specificity pockets of executioner caspase-7 revealed by structural and kinetic analysis.
    Agniswamy J; Fang B; Weber IT
    FEBS J; 2007 Sep; 274(18):4752-65. PubMed ID: 17697120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A substrate-phage approach for investigating caspase specificity.
    Lien S; Pastor R; Sutherlin D; Lowman HB
    Protein J; 2004 Aug; 23(6):413-25. PubMed ID: 15517988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for executioner caspase recognition of P5 position in substrates.
    Fu G; Chumanevich AA; Agniswamy J; Fang B; Harrison RW; Weber IT
    Apoptosis; 2008 Nov; 13(11):1291-302. PubMed ID: 18780184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of a protein-protein interface: local dynamics direct substrate recognition of effector caspases.
    Fuchs JE; von Grafenstein S; Huber RG; Wallnoefer HG; Liedl KR
    Proteins; 2014 Apr; 82(4):546-55. PubMed ID: 24085488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional definition of the specificity of a novel caspase-3 inhibitor, Ac-DNLD-CHO.
    Yoshimori A; Sakai J; Sunaga S; Kobayashi T; Takahashi S; Okita N; Takasawa R; Tanuma S
    BMC Pharmacol; 2007 Jun; 7():8. PubMed ID: 17594508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection.
    Maciag JJ; Mackenzie SH; Tucker MB; Schipper JL; Swartz P; Clark AC
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6080-E6088. PubMed ID: 27681633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and kinetic analysis of caspase-3 reveals role for s5 binding site in substrate recognition.
    Fang B; Boross PI; Tozser J; Weber IT
    J Mol Biol; 2006 Jul; 360(3):654-66. PubMed ID: 16781734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications to a common phosphorylation network provide individualized control in caspases.
    Thomas ME; Grinshpon R; Swartz P; Clark AC
    J Biol Chem; 2018 Apr; 293(15):5447-5461. PubMed ID: 29414778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caspase-3 binds diverse P4 residues in peptides as revealed by crystallography and structural modeling.
    Fang B; Fu G; Agniswamy J; Harrison RW; Weber IT
    Apoptosis; 2009 May; 14(5):741-52. PubMed ID: 19283487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric modulation of caspase 3 through mutagenesis.
    Walters J; Schipper JL; Swartz P; Mattos C; Clark AC
    Biosci Rep; 2012 Aug; 32(4):401-11. PubMed ID: 22607239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of zebrafish caspase-3 and induction of apoptosis through ceramide generation in fish fathead minnow tailbud cells and zebrafish embryo.
    Yabu T; Kishi S; Okazaki T; Yamashita M
    Biochem J; 2001 Nov; 360(Pt 1):39-47. PubMed ID: 11695990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective detection of caspase-3 versus caspase-7 using activity-based probes with key unnatural amino acids.
    Vickers CJ; González-Páez GE; Wolan DW
    ACS Chem Biol; 2013 Jul; 8(7):1558-66. PubMed ID: 23614665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of zebrafish hatching enzyme 1 from the zebrafish Danio rerio.
    Okada A; Sano K; Nagata K; Yasumasu S; Ohtsuka J; Yamamura A; Kubota K; Iuchi I; Tanokura M
    J Mol Biol; 2010 Oct; 402(5):865-78. PubMed ID: 20727360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifying caspase-3 activity by altering allosteric networks.
    Cade C; Swartz P; MacKenzie SH; Clark AC
    Biochemistry; 2014 Dec; 53(48):7582-95. PubMed ID: 25343534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display.
    O'Boyle DR; Pokornowski KA; McCann PJ; Weinheimer SP
    Virology; 1997 Sep; 236(2):338-47. PubMed ID: 9325241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity of the Escherichia coli outer membrane protease OmpT.
    McCarter JD; Stephens D; Shoemaker K; Rosenberg S; Kirsch JF; Georgiou G
    J Bacteriol; 2004 Sep; 186(17):5919-25. PubMed ID: 15317797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.