These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27577400)

  • 1. Automatic Extraction of Drug Adverse Effects from Product Characteristics (SPCs): A Text Versus Table Comparison.
    Lamy JB; Ugon A; Berthelot H
    Stud Health Technol Inform; 2016; 228():339-43. PubMed ID: 27577400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building and evaluation of a structured representation of pharmacokinetics information presented in SPCs: from existing conceptual views of pharmacokinetics associated with natural language processing to object-oriented design.
    Duclos-Cartolano C; Venot A
    J Am Med Inform Assoc; 2003; 10(3):271-80. PubMed ID: 12626375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining automatic table classification and relationship extraction in extracting anticancer drug-side effect pairs from full-text articles.
    Xu R; Wang Q
    J Biomed Inform; 2015 Feb; 53():128-35. PubMed ID: 25445920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Exploratory Study on Pseudo-Data Generation in Prescription and Adverse Drug Reaction Extraction.
    Tao C; Lee K; Filannino M; Uzuner Ö
    Stud Health Technol Inform; 2019 Aug; 264():388-392. PubMed ID: 31437951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leveraging Contextual Information in Extracting Long Distance Relations from Clinical Notes.
    Guan H; Devarakonda M
    AMIA Annu Symp Proc; 2019; 2019():1051-1060. PubMed ID: 32308902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions.
    Oronoz M; Gojenola K; Pérez A; de Ilarraza AD; Casillas A
    J Biomed Inform; 2015 Aug; 56():318-32. PubMed ID: 26141794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural language processing to identify adverse drug events.
    Gysbers M; Reichley R; Kilbridge PM; Noirot L; Nagarajan R; Dunagan WC; Bailey TC
    AMIA Annu Symp Proc; 2008 Nov; ():961. PubMed ID: 18999130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
    Sarker A; Gonzalez G
    J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NLP techniques associated with the OpenGALEN ontology for semi-automatic textual extraction of medical knowledge: abstracting and mapping equivalent linguistic and logical constructs.
    do Amaral MB; Roberts A; Rector AL
    Proc AMIA Symp; 2000; ():76-80. PubMed ID: 11079848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mining for adverse drug events with formal concept analysis.
    Estacio-Moreno A; Toussaint Y; Bousquet C
    Stud Health Technol Inform; 2008; 136():803-8. PubMed ID: 18487830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Summarizing drug information in Medline citations.
    Fiszman M; Rindflesch TC; Kilicoglu H
    AMIA Annu Symp Proc; 2006; 2006():254-8. PubMed ID: 17238342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Drug Safety Rating System Based on Postmarketing Costs Associated with Adverse Events and Patient Outcomes.
    Hoffman KB; Dimbil M; Kyle RF; Tatonetti NP; Erdman CB; Demakas A; Chen D; Overstreet BM
    J Manag Care Spec Pharm; 2015 Dec; 21(12):1134-43. PubMed ID: 26679963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A system for the extraction and representation of summary of product characteristics content.
    Rubrichi S; Quaglini S; Spengler A; Russo P; Gallinari P
    Artif Intell Med; 2013 Feb; 57(2):145-54. PubMed ID: 23085139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic abstraction of imaging observations with their characteristics from mammography reports.
    Bozkurt S; Lipson JA; Senol U; Rubin DL
    J Am Med Inform Assoc; 2015 Apr; 22(e1):e81-92. PubMed ID: 25352567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing RAPTOR: RevMan Parsing Tool for Reviewers.
    Schmidt L; Shokraneh F; Steinhausen K; Adams CE
    Syst Rev; 2019 Jun; 8(1):151. PubMed ID: 31242929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards automatic extraction of research findings from the literature.
    Hristovski D; Revere D; Bugni P; Fuller S; Friedman C; Rindflesch TC
    AMIA Annu Symp Proc; 2007 Oct; ():979. PubMed ID: 18694079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale automatic extraction of side effects associated with targeted anticancer drugs from full-text oncological articles.
    Xu R; Wang Q
    J Biomed Inform; 2015 Jun; 55():64-72. PubMed ID: 25817969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting medication information from French clinical texts.
    Deléger L; Grouin C; Zweigenbaum P
    Stud Health Technol Inform; 2010; 160(Pt 2):949-53. PubMed ID: 20841824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing the state of the art in automatic extraction of adverse drug events from narratives.
    Uzuner Ö; Stubbs A; Lenert L
    J Am Med Inform Assoc; 2020 Jan; 27(1):1-2. PubMed ID: 31841150
    [No Abstract]   [Full Text] [Related]  

  • 20. Knowledge-Driven Event Extraction in Russian: Corpus-Based Linguistic Resources.
    Solovyev V; Ivanov V
    Comput Intell Neurosci; 2016; 2016():4183760. PubMed ID: 26955386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.