BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27577501)

  • 1. Electronic Medical Record-Based Predictive Model for Acute Kidney Injury in an Acute Care Hospital.
    Laszczyńska O; Severo M; Azevedo A
    Stud Health Technol Inform; 2016; 228():810-2. PubMed ID: 27577501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study.
    Hsu CN; Liu CL; Tain YL; Kuo CY; Lin YC
    J Med Internet Res; 2020 Aug; 22(8):e16903. PubMed ID: 32749223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Inpatient Acute Kidney Injury over Different Time Horizons: How Early and Accurate?
    Cheng P; Waitman LR; Hu Y; Liu M
    AMIA Annu Symp Proc; 2017; 2017():565-574. PubMed ID: 29854121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of e-alert systems on the care of patients with acute kidney injury.
    Breighner CM; Kashani KB
    Best Pract Res Clin Anaesthesiol; 2017 Sep; 31(3):353-359. PubMed ID: 29248142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and detection models for acute kidney injury in hospitalized older adults.
    Kate RJ; Perez RM; Mazumdar D; Pasupathy KS; Nilakantan V
    BMC Med Inform Decis Mak; 2016 Mar; 16():39. PubMed ID: 27025458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing imbalanced electronic health records to predict acute kidney injury by ensemble learning and time series model.
    Wang Y; Wei Y; Yang H; Li J; Zhou Y; Wu Q
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):238. PubMed ID: 32957977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital.
    Porter CJ; Juurlink I; Bisset LH; Bavakunji R; Mehta RL; Devonald MA
    Nephrol Dial Transplant; 2014 Oct; 29(10):1888-93. PubMed ID: 24744280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of electronic results reporting to diagnose and monitor AKI in hospitalized patients.
    Selby NM; Crowley L; Fluck RJ; McIntyre CW; Monaghan J; Lawson N; Kolhe NV
    Clin J Am Soc Nephrol; 2012 Apr; 7(4):533-40. PubMed ID: 22362062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and initial implementation of electronic clinical decision supports for recognition and management of hospital-acquired acute kidney injury.
    Howarth M; Bhatt M; Benterud E; Wolska A; Minty E; Choi KY; Devrome A; Harrison TG; Baylis B; Dixon E; Datta I; Pannu N; James MT
    BMC Med Inform Decis Mak; 2020 Nov; 20(1):287. PubMed ID: 33148237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A continual prediction model for inpatient acute kidney injury.
    Kate RJ; Pearce N; Mazumdar D; Nilakantan V
    Comput Biol Med; 2020 Jan; 116():103580. PubMed ID: 32001013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated acute kidney injury alerts.
    Kashani KB
    Kidney Int; 2018 Sep; 94(3):484-490. PubMed ID: 29728257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Prediction Model of Early Acute Kidney Injury in Critically Ill Children Using Electronic Health Record Data.
    Sanchez-Pinto LN; Khemani RG
    Pediatr Crit Care Med; 2016 Jun; 17(6):508-15. PubMed ID: 27124567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic health record-based predictive models for acute kidney injury screening in pediatric inpatients.
    Wang L; McGregor TL; Jones DP; Bridges BC; Fleming GM; Shirey-Rice J; McLemore MF; Chen L; Weitkamp A; Byrne DW; Van Driest SL
    Pediatr Res; 2017 Sep; 82(3):465-473. PubMed ID: 28486440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Intelligence in Acute Kidney Injury: From Static to Dynamic Models.
    Mistry NS; Koyner JL
    Adv Chronic Kidney Dis; 2021 Jan; 28(1):74-82. PubMed ID: 34389139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A prediction and interpretation framework of acute kidney injury in critical care.
    Gong K; Lee HK; Yu K; Xie X; Li J
    J Biomed Inform; 2021 Jan; 113():103653. PubMed ID: 33338667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel multivariable time series prediction model for acute kidney injury in general hospitalization.
    Xu J; Hu Y; Liu H; Mi W; Li G; Guo J; Feng Y
    Int J Med Inform; 2022 May; 161():104729. PubMed ID: 35279551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated/integrated real-time clinical decision support in acute kidney injury.
    Goldstein SL
    Curr Opin Crit Care; 2015 Dec; 21(6):485-9. PubMed ID: 26539921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer decision support for acute kidney injury: current and future.
    Kashani K
    Curr Opin Crit Care; 2016 Dec; 22(6):520-526. PubMed ID: 27652908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method for predicting kidney stone type using ensemble learning.
    Kazemi Y; Mirroshandel SA
    Artif Intell Med; 2018 Jan; 84():117-126. PubMed ID: 29241659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting AKI in emergency admissions: an external validation study of the acute kidney injury prediction score (APS).
    Hodgson LE; Dimitrov BD; Roderick PJ; Venn R; Forni LG
    BMJ Open; 2017 Mar; 7(3):e013511. PubMed ID: 28274964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.