These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 27577779)

  • 1. A confident source of hard X-rays: radiation from a tokamak applicable for runaway electrons diagnosis.
    Kafi M; Salar Elahi A; Ghoranneviss M; Ghanbari MR; Salem MK
    J Synchrotron Radiat; 2016 Sep; 23(Pt 5):1227-31. PubMed ID: 27577779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface protection from high energy electrons and X-ray radiation analysis in tokamak plasma.
    Salar Elahi A; Ghoranneviss M
    J Xray Sci Technol; 2017; 25(5):777-785. PubMed ID: 28550269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new perspective on synchrotron radiation applications: Runaway electrons studies using a hard x-ray detection in tokamaks.
    Ghanbari K; Salar Elahi A; Ghoranneviss M
    J Xray Sci Technol; 2017; 25(1):15-23. PubMed ID: 27662276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. x-ray irradiation analysis based on wavelet transform in tokamak plasma.
    Ghanbari K; Ghoranneviss M; Elahi AS; Saviz S
    J Xray Sci Technol; 2014; 22(6):777-83. PubMed ID: 25408394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Runaway electron energy measurement using hard x-ray spectroscopy in "Damavand" tokamak.
    Rasouli C; Iraji D; Farahbod AH; Akhtari K; Rasouli H; Modarresi H; Lamehi M
    Rev Sci Instrum; 2009 Jan; 80(1):013503. PubMed ID: 19191433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.
    Agah KM; Ghoranneviss M; Elahi AS
    J Xray Sci Technol; 2015; 23(2):267-74. PubMed ID: 25882736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toroidal runaway beams.
    Fussmann G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013105. PubMed ID: 23410444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hard X-ray spatial array diagnostics on Joint Texas Experimental Tokamak.
    Huang DW; Chen ZY; Luo YH; Tong RH; Yan W; Jin W; Zhuang G
    Rev Sci Instrum; 2014 Nov; 85(11):11D845. PubMed ID: 25430258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.
    Rasouli C; Pourshahab B; Hosseini Pooya SM; Orouji T; Rasouli H
    Rev Sci Instrum; 2014 May; 85(5):053509. PubMed ID: 24880371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Note: measurement of the runaway electrons in the J-TEXT tokamak.
    Chen ZY; Zhang Y; Zhang XQ; Luo YH; Jin W; Li JC; Chen ZP; Wang ZJ; Yang ZJ; Zhuang G
    Rev Sci Instrum; 2012 May; 83(5):056108. PubMed ID: 22667672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy distribution of lost high-energy runaway electrons based on their bremsstrahlung emission in the EAST tokamak.
    Zhou RJ
    Phys Rev E; 2023 Apr; 107(4-2):045204. PubMed ID: 37198789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Runaway electrons and their interaction with tungsten wall: a comprehensive study of effects.
    Ataeiseresht L; Abdi MR; Pourshahab B; Rasouli C
    Sci Rep; 2023 Dec; 13(1):21760. PubMed ID: 38066056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions.
    Lehnen M; Bozhenkov SA; Abdullaev SS; ; Jakubowski MW
    Phys Rev Lett; 2008 Jun; 100(25):255003. PubMed ID: 18643669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of optical transmission across the ITER hard x-ray monitor system designed for the first plasma scenarios.
    Nowak Vel Nowakowski P; Makowski D; Jabłoński B; Szajerski P; Pandya SP; O'Connor R; Tieulent R; Barnsley R
    Rev Sci Instrum; 2022 Oct; 93(10):103512. PubMed ID: 36319325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental observation of increased threshold electric field for runaway generation due to synchrotron radiation losses in the FTU Tokamak.
    Martín-Solís JR; Sánchez R; Esposito B
    Phys Rev Lett; 2010 Oct; 105(18):185002. PubMed ID: 21231111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks.
    Spong DA; Heidbrink WW; Paz-Soldan C; Du XD; Thome KE; Van Zeeland MA; Collins C; Lvovskiy A; Moyer RA; Austin ME; Brennan DP; Liu C; Jaeger EF; Lau C
    Phys Rev Lett; 2018 Apr; 120(15):155002. PubMed ID: 29756886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks.
    Paz-Soldan C; Cooper CM; Aleynikov P; Pace DC; Eidietis NW; Brennan DP; Granetz RS; Hollmann EM; Liu C; Lvovskiy A; Moyer RA; Shiraki D
    Phys Rev Lett; 2017 Jun; 118(25):255002. PubMed ID: 28696735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral measurements of runaway electrons by a scanning probe in the TEXTOR tokamak.
    Kudyakov T; Finken KH; Jakubowski M; Lehnen M; Xu Y; Willi O
    Rev Sci Instrum; 2008 Oct; 79(10):10F126. PubMed ID: 19044610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating the nonlinear interaction of relativistic electrons and tokamak plasma instabilities: Implementation and validation of a fluid model.
    Bandaru V; Hoelzl M; Artola FJ; Papp G; Huijsmans GTA
    Phys Rev E; 2019 Jun; 99(6-1):063317. PubMed ID: 31330586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of two threshold fields for relativistic runaway electrons.
    Aleynikov P; Breizman BN
    Phys Rev Lett; 2015 Apr; 114(15):155001. PubMed ID: 25933316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.