These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27578363)

  • 1. Observation of an anisotropic Dirac cone reshaping and ferrimagnetic spin polarization in an organic conductor.
    Hirata M; Ishikawa K; Miyagawa K; Tamura M; Berthier C; Basko D; Kobayashi A; Matsuno G; Kanoda K
    Nat Commun; 2016 Aug; 7():12666. PubMed ID: 27578363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interacting chiral electrons at the 2D Dirac points: a review.
    Hirata M; Kobayashi A; Berthier C; Kanoda K
    Rep Prog Phys; 2021 Mar; 84(3):. PubMed ID: 33059346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the zero-gap organic conductor α-(BEDT-TTF)
    Kobayashi A; Katayama S; Suzumura Y
    Sci Technol Adv Mater; 2009 Apr; 10(2):024309. PubMed ID: 27877282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermi Velocity Reduction of Dirac Fermions around the Brillouin Zone Center in In
    Wang Z; Hao Z; Yu Y; Wang Y; Kumar S; Xie X; Tong M; Deng K; Hao YJ; Ma XM; Zhang K; Liu C; Ma M; Mei J; Wang G; Schwier EF; Shimada K; Xu F; Liu C; Huang W; Wang J; Jiang T; Chen C
    Adv Mater; 2021 Apr; 33(17):e2007503. PubMed ID: 33739570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong anisotropy of Dirac cones in SrMnBi2 and CaMnBi2 revealed by angle-resolved photoemission spectroscopy.
    Feng Y; Wang Z; Chen C; Shi Y; Xie Z; Yi H; Liang A; He S; He J; Peng Y; Liu X; Liu Y; Zhao L; Liu G; Dong X; Zhang J; Chen C; Xu Z; Dai X; Fang Z; Zhou XJ
    Sci Rep; 2014 Jun; 4():5385. PubMed ID: 24947490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulating Nature of Strongly Correlated Massless Dirac Fermions in an Organic Crystal.
    Liu D; Ishikawa K; Takehara R; Miyagawa K; Tamura M; Kanoda K
    Phys Rev Lett; 2016 Jun; 116(22):226401. PubMed ID: 27314731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Anisotropic Dirac Cone Material: A B
    Zhao Y; Li X; Liu J; Zhang C; Wang Q
    J Phys Chem Lett; 2018 Apr; 9(7):1815-1820. PubMed ID: 29575891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-exact solutions for guided modes in two-dimensional materials with tilted Dirac cones.
    Ng RA; Wild A; Portnoi ME; Hartmann RR
    Sci Rep; 2022 May; 12(1):7688. PubMed ID: 35538110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study of organic zero-gap conductor α-(BEDT-TTF)
    Tajima N; Kajita K
    Sci Technol Adv Mater; 2009 Apr; 10(2):024308. PubMed ID: 27877281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Kronig-Penney-type graphene superlattices: finite energy Dirac points with anisotropic velocity renormalization.
    Qui Le V; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2012 Aug; 24(34):345502. PubMed ID: 22850460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric Tilt-Induced Quantum Beating of Conductance Oscillation in Magnetically Modulated Dirac Matter Systems.
    Sukprasert N; Rakrong P; Saipaopan C; Choopan W; Liewrian W
    Nanomaterials (Basel); 2024 May; 14(9):. PubMed ID: 38727405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal Fermi-surface anisotropy renormalization for interacting Dirac fermions with long-range interactions.
    Leaw JN; Tang HK; Trushin M; Assaad FF; Adam S
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26431-26434. PubMed ID: 31818954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of 2D Anisotropic Dirac Cones.
    Feng B; Zhang J; Ito S; Arita M; Cheng C; Chen L; Wu K; Komori F; Sugino O; Miyamoto K; Okuda T; Meng S; Matsuda I
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29171690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system.
    Feng Y; Liu D; Feng B; Liu X; Zhao L; Xie Z; Liu Y; Liang A; Hu C; Hu Y; He S; Liu G; Zhang J; Chen C; Xu Z; Chen L; Wu K; Liu YT; Lin H; Huang ZQ; Hsu CH; Chuang FC; Bansil A; Zhou XJ
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14656-14661. PubMed ID: 27930314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions.
    Isobe H; Nagaosa N
    Phys Rev Lett; 2016 Mar; 116(11):116803. PubMed ID: 27035318
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Wang X; Ding G; Cheng Z; Yuan H; Wang XL; Yang T; Khenata R; Wang W
    IUCrJ; 2019 Nov; 6(Pt 6):990-995. PubMed ID: 31709054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tunable topological insulator in the spin helical Dirac transport regime.
    Hsieh D; Xia Y; Qian D; Wray L; Dil JH; Meier F; Osterwalder J; Patthey L; Checkelsky JG; Ong NP; Fedorov AV; Lin H; Bansil A; Grauer D; Hor YS; Cava RJ; Hasan MZ
    Nature; 2009 Aug; 460(7259):1101-5. PubMed ID: 19620959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuations in Planar Magnetotransport Due to Tilted Dirac Cones in Topological Materials.
    Thenapparambil A; Dos Santos GE; Li CA; Abdelghany M; Beugeling W; Buhmann H; Gould C; Zhang SB; Trauzettel B; Molenkamp LW
    Nano Lett; 2023 Aug; 23(15):6914-6919. PubMed ID: 37498076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New generation of massless Dirac fermions in graphene under external periodic potentials.
    Park CH; Yang L; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2008 Sep; 101(12):126804. PubMed ID: 18851401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflectionless Klein tunneling of Dirac fermions: comparison of split-operator and staggered-lattice discretization of the Dirac equation.
    Donís Vela A; Lemut G; Pacholski MJ; Tworzydło J; Beenakker CWJ
    J Phys Condens Matter; 2022 Jul; 34(36):. PubMed ID: 35767975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.