These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27578363)

  • 21. Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2.
    Liu J; Hu J; Cao H; Zhu Y; Chuang A; Graf D; Adams DJ; Radmanesh SM; Spinu L; Chiorescu I; Mao Z
    Sci Rep; 2016 Jul; 6():30525. PubMed ID: 27466151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deterministic Scheme for Two-Dimensional Type-II Dirac Points and Experimental Realization in Acoustics.
    Wu X; Li X; Zhang RY; Xiang X; Tian J; Huang Y; Wang S; Hou B; Chan CT; Wen W
    Phys Rev Lett; 2020 Feb; 124(7):075501. PubMed ID: 32142315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable multiple layered Dirac cones in optical lattices.
    Lan Z; Celi A; Lu W; Öhberg P; Lewenstein M
    Phys Rev Lett; 2011 Dec; 107(25):253001. PubMed ID: 22243070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oblique and Asymmetric Klein Tunneling across Smooth NP Junctions or NPN Junctions in 8-
    Kong Z; Li J; Zhang Y; Zhang SH; Zhu JJ
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34073150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying Dirac cones in carbon allotropes with square symmetry.
    Wang J; Huang H; Duan W; Liu Z
    J Chem Phys; 2013 Nov; 139(18):184701. PubMed ID: 24320285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observation of single-spin Dirac fermions at the graphene/ferromagnet interface.
    Usachov D; Fedorov A; Otrokov MM; Chikina A; Vilkov O; Petukhov A; Rybkin AG; Koroteev YM; Chulkov EV; Adamchuk VK; Grüneis A; Laubschat C; Vyalikh DV
    Nano Lett; 2015 Apr; 15(4):2396-401. PubMed ID: 25734657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS.
    Schoop LM; Ali MN; Straßer C; Topp A; Varykhalov A; Marchenko D; Duppel V; Parkin SS; Lotsch BV; Ast CR
    Nat Commun; 2016 May; 7():11696. PubMed ID: 27241624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Designer Dirac fermions and topological phases in molecular graphene.
    Gomes KK; Mar W; Ko W; Guinea F; Manoharan HC
    Nature; 2012 Mar; 483(7389):306-10. PubMed ID: 22422264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulse Reshaping in Double-zero-index Photonic Crystals with Dirac-like-cone Dispersion.
    Xu T; Zhu D; Hang ZH
    Sci Rep; 2020 May; 10(1):8416. PubMed ID: 32439891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anomalous spin correlations and excitonic instability of interacting 2D Weyl fermions.
    Hirata M; Ishikawa K; Matsuno G; Kobayashi A; Miyagawa K; Tamura M; Berthier C; Kanoda K
    Science; 2017 Dec; 358(6369):1403-1406. PubMed ID: 29242340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nontrivial Berry phase in magnetic BaMnSb
    Huang S; Kim J; Shelton WA; Plummer EW; Jin R
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6256-6261. PubMed ID: 28539436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Na
    Ji WX; Zhang BM; Zhang SF; Zhang CW; Ding M; Wang PJ; Zhang R
    Nanoscale; 2018 Jul; 10(28):13645-13651. PubMed ID: 29985502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of phonons and dirac fermions on the surface of Bi2Se3: a strong Kohn anomaly.
    Zhu X; Santos L; Sankar R; Chikara S; Howard C; Chou FC; Chamon C; El-Batanouny M
    Phys Rev Lett; 2011 Oct; 107(18):186102. PubMed ID: 22107648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anisotropic Dirac fermions in a Bi square net of SrMnBi2.
    Park J; Lee G; Wolff-Fabris F; Koh YY; Eom MJ; Kim YK; Farhan MA; Jo YJ; Kim C; Shim JH; Kim JS
    Phys Rev Lett; 2011 Sep; 107(12):126402. PubMed ID: 22026779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semimetallic carbon honeycombs: new three-dimensional graphene allotropes with Dirac cones.
    Wang S; Wu D; Yang B; Ruckenstein E; Chen H
    Nanoscale; 2018 Feb; 10(6):2748-2754. PubMed ID: 29336453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antiferromagnetic topological insulator with selectively gapped Dirac cones.
    Honma A; Takane D; Souma S; Yamauchi K; Wang Y; Nakayama K; Sugawara K; Kitamura M; Horiba K; Kumigashira H; Tanaka K; Kim TK; Cacho C; Oguchi T; Takahashi T; Ando Y; Sato T
    Nat Commun; 2023 Nov; 14(1):7396. PubMed ID: 37978297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The topology and robustness of two Dirac cones in S-graphene: A tight binding approach.
    Bandyopadhyay A; Datta S; Jana D; Nath S; Uddin MM
    Sci Rep; 2020 Feb; 10(1):2502. PubMed ID: 32051466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct observation of Dirac cone in multilayer silicene intercalation compound CaSi2.
    Noguchi E; Sugawara K; Yaokawa R; Hitosugi T; Nakano H; Takahashi T
    Adv Mater; 2015 Feb; 27(5):856-60. PubMed ID: 25502913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of Anisotropic Massless Dirac Fermions and Asymmetric Klein Tunneling in Few-Layer Black Phosphorus Superlattices.
    Li Z; Cao T; Wu M; Louie SG
    Nano Lett; 2017 Apr; 17(4):2280-2286. PubMed ID: 28231010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum-confinement and Structural Anisotropy result in Electrically-Tunable Dirac Cone in Few-layer Black Phosphorous.
    Dolui K; Quek SY
    Sci Rep; 2015 Jul; 5():11699. PubMed ID: 26129645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.