BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27578430)

  • 1. Fluorometric Measurement of Individual Stomata Activity and Transpiration via a "Brush-on", Water-Responsive Polymer.
    Seo M; Park DH; Lee CW; Jaworski J; Kim JM
    Sci Rep; 2016 Aug; 6():32394. PubMed ID: 27578430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.
    Azoulay-Shemer T; Palomares A; Bagheri A; Israelsson-Nordstrom M; Engineer CB; Bargmann BO; Stephan AB; Schroeder JI
    Plant J; 2015 Aug; 83(4):567-81. PubMed ID: 26096271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
    Kwon HW; Choi MY
    J Theor Biol; 2014 Jan; 340():119-30. PubMed ID: 24060618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics.
    Osborne CP; Sack L
    Philos Trans R Soc Lond B Biol Sci; 2012 Feb; 367(1588):583-600. PubMed ID: 22232769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of transpiration by radiation.
    Pieruschka R; Huber G; Berry JA
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13372-7. PubMed ID: 20624981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration.
    Katul G; Manzoni S; Palmroth S; Oren R
    Ann Bot; 2010 Mar; 105(3):431-42. PubMed ID: 19995810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees.
    Brodribb TJ; Jordan GJ
    New Phytol; 2011 Oct; 192(2):437-48. PubMed ID: 21679190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive origins of stomatal control in vascular plants.
    Brodribb TJ; McAdam SA
    Science; 2011 Feb; 331(6017):582-5. PubMed ID: 21163966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cuticle Affects Calculations of Internal CO2 in Leaves Closing Their Stomata.
    Tominaga J; Kawamitsu Y
    Plant Cell Physiol; 2015 Oct; 56(10):1900-8. PubMed ID: 26206845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal optimisation in relation to atmospheric CO2.
    Buckley TN; Schymanski SJ
    New Phytol; 2014 Jan; 201(2):372-377. PubMed ID: 24124922
    [No Abstract]   [Full Text] [Related]  

  • 12. [Coordination effect between vapor water loss through plant stomata and liquid water supply in soil-plant-atmosphere continuum (SPAC): a review].
    Liu LM; Qi H; Luo XL; Zhang X
    Ying Yong Sheng Tai Xue Bao; 2008 Sep; 19(9):2067-73. PubMed ID: 19102325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand.
    Richardson F; Brodribb TJ; Jordan GJ
    Tree Physiol; 2017 Jul; 37(7):869-878. PubMed ID: 28898992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthesis affects following night leaf conductance in Vicia faba.
    Easlon HM; Richards JH
    Plant Cell Environ; 2009 Jan; 32(1):58-63. PubMed ID: 19076531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A naturally optimized mass transfer process: The stomatal transpiration of plant leaves.
    Xu K; Guo L; Ye H
    J Plant Physiol; 2019; 234-235():138-144. PubMed ID: 30798115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the Molecular Mechanisms of CO
    Zhang J; De-Oliveira-Ceciliato P; Takahashi Y; Schulze S; Dubeaux G; Hauser F; Azoulay-Shemer T; Tõldsepp K; Kollist H; Rappel WJ; Schroeder JI
    Curr Biol; 2018 Dec; 28(23):R1356-R1363. PubMed ID: 30513335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OnGuard3e: A predictive, ecophysiology-ready tool for gas exchange and photosynthesis research.
    Nguyen TH; Silva-Alvim FAL; Hills A; Blatt MR
    Plant Cell Environ; 2023 Nov; 46(11):3644-3658. PubMed ID: 37498151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing a vapour-phase model of stomatal responses to humidity.
    Mott KA; Peak D
    Plant Cell Environ; 2013 May; 36(5):936-44. PubMed ID: 23072325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.
    Lautner S; Stummer M; Matyssek R; Fromm J; Grams TE
    Plant Cell Environ; 2014 Jan; 37(1):254-60. PubMed ID: 23763645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reevaluation of the plant "gemstones": Calcium oxalate crystals sustain photosynthesis under drought conditions.
    Tooulakou G; Giannopoulos A; Nikolopoulos D; Bresta P; Dotsika E; Orkoula MG; Kontoyannis CG; Fasseas C; Liakopoulos G; Klapa MI; Karabourniotis G
    Plant Signal Behav; 2016 Sep; 11(9):e1215793. PubMed ID: 27471886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.